[六省联考2017]分手是祝愿 题解(期望dp)

题目描述

B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为从 1 到 n 的正整数。

每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏的目标是使所有灯都灭掉。

但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被改变,即从亮变成灭,或者是从灭变成亮。

B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机操作一个开关,直到所有灯都灭掉。

这个策略需要的操作次数很多,B 君想到这样的一个优化。如果当前局面,可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个策略显然小于等于 k 步)操作这些开关。

B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使用操作次数最小的操作方法)的操作次数的期望。

这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定是整数,所以他只需要知道这个整数对 100003 取模之后的结果。

$Solution:$

好神啊。

首先考虑怎么做才是最优策略,不难得出一个猜想:从右向左操作,能关就关。

感性理解一下,编号小的肯定无法控制编号大的,而每个编号进行操作所影响的集合也是一定的(与它目前的状态无关)。既然编号大的且亮着的迟早都要按,而且影响也是确定的,那不如先按它确定了状态来进行接下来的处理。

另外,这样显然每个灯最多操作一次,所以最优步数一定不大于n。

对于每个状态,最优策略是唯一确定的,那么我们就可以用最优策略下的操作数来代表每个状态。

如果在$i$状态进行正确的操作,$i$就会变成$i-1$。反之,如果操作不正确,它就会变成$i+1$。

对随机的部分,设$dp[i]$为从$i$到$i-1$所需的期望步数。

根据之前的推论,不难得到:$dp[i]=1 \times \frac{i}{n} + \frac{n-i}{n} \times (dp[i]+dp[i+1]+1)$

按对了一步跳过去,按错了回到$i+1$,还需要$dp[i+1]+dp[i]+1$才能跳到$i-1$。

化简得到$dp[i]=\frac{(n-i)dp[i+1]+n}{i}$,先求个$\sum$,再和采取最优策略部分的步数拼一下就是答案。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
const int N=1e5+5;
typedef long long ll;
const ll mod=1e5+3;
int n,K,a[N];
vector<int> fact[N];
ll fac=1,ans,dp[N];
ll qpow(ll x,ll y)
{
    ll res=1;x=x%mod;
    while(y)
    {
        if(y&1)res=res*x%mod;
        x=x*x%mod;
        y>>=1;
    }
    return res;
}

void ini()
{
    for(int x=1;x<=n;x++)
    {
        fac*=1LL*x,fac%=mod;
        for(int i=1;i*i<=x;i++)
        {
            if(x%i)continue;
            if(i*i==x)fact[x].push_back(i);
            else fact[x].push_back(i),fact[x].push_back(x/i);
        }
    }
}

int main()
{
    scanf("%d%d",&n,&K);
    ini();
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    int step=0;
    for(int i=n;i;i--)
    {
        if(!a[i])continue;
        step++;
        for(int j=0;j<fact[i].size();j++)
            a[fact[i][j]]^=1;
    }
    if(step<=K)
    {
        printf("%lld\n",1LL*step*fac%mod);
        return 0;
    }
    for(int i=n;i>K;i--)
    {
        ll inv=qpow(i,mod-2);
        dp[i]=(1LL*(n-i)*dp[i+1]%mod+n%mod)%mod;
        (dp[i]*=inv)%=mod;
    }
    for(int i=K+1;i<=step;i++)
        (ans+=dp[i])%=mod;
    (ans+=K)%=mod;
    (ans*=fac)%=mod;
    cout<<ans<<endl;
    return 0;
}

原文地址:https://www.cnblogs.com/Rorschach-XR/p/11619177.html

时间: 2024-11-12 06:00:52

[六省联考2017]分手是祝愿 题解(期望dp)的相关文章

bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿

http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关至多操作1次,(连带着的灯的亮灭改变不算) 设最优解 需要操作cnt次,那么就有cnt盏灯是正确的选择 设 f[i] 表示 有i种正确的选择  变为 有i-1种正确的选择 的 期望次数 那么在n盏灯中,有i盏灯操作1次 就可以 减少一次正确选择 有n-i盏灯是错误的选择,选了它还要把它还原,还原它也

[六省联考2017]分手是祝愿

传送门 这题是个很好的题呀.我一开始能想到好像对于k=n的情况只要扫一遍就行了--但是我没有意识到这是个必要的环节. 就是我们如果从大到小扫一遍,每次遇到亮的灯就按一下,这个过程中按的灯数是必要的.(这个比较显然--其实是我也找不出步数更少的反例--)那么我们就可以DP了-- 考虑从需要i+1步到i步,这个其实就是我们喜闻乐见的抛硬币期望的--propropro版-- 可以想到\(dp[i] = \frac{i}{n} + \frac{n-i}{n}(dp[i] + dp[i+1] + 1)\)

P3746 [六省联考2017]组合数问题

P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)%k}+dp_{i-1,j}\) \(dp_{i,0},dp_{i,1},dp_{i,2}.....dp_{i,k-1}\) \(\Longrightarrow\) \(dp_{i+1,0},dp_{i+1,1},dp_{i+1,2}.....dp_{i+1,k-1}\) 仔细想想,你能构造出矩阵的 #include

[luogu] P3745 [六省联考2017]期末考试 (贪心)

P3745 [六省联考2017]期末考试 题目描述 有 \(n\) 位同学,每位同学都参加了全部的 \(m\) 门课程的期末考试,都在焦急的等待成绩的公布. 第 \(i\) 位同学希望在第 \(t_i\)? 天或之前得知所有课程的成绩.如果在第 \(t_i\) 天,有至少一门课程的成绩没有公布,他就会等待最后公布成绩的课程公布成绩,每等待一天就会产生 \(C\) 不愉快度. 对于第 \(i\) 门课程,按照原本的计划,会在第 \(b_i\)? 天公布成绩. 有如下两种操作可以调整公布成绩的时间:

bzoj千题计划265:bzoj4873: [六省联考2017]寿司餐厅

http://www.lydsy.com/JudgeOnline/problem.php?id=4873 选a必选b,a依赖于b 最大权闭合子图模型 构图: 1.源点 向 正美味度区间 连 流量为 美味度 的边 2.负美味度区间 向 汇点 连 流量为 美味度的绝对值 的边 3.区间[i,j] 向 区间[i+1,j].区间[i,j-1] 连 流量为 inf 的边 4.区间[i,i] 向 寿司i 连 流量为 inf 的边 5.寿司i 向 汇点 连 流量为 寿司代号 的边 6.寿司i 向 它的代号 连

[BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)

4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Status][Discuss] Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每

六省联考2017

期末考试 sol 因为时间范围很小,所以可以利用单调性求出对于每一个时间$t$,当最晚的成绩公布时间为$t$时学生产生的不满意度总和$f_t$和让所有课程的公布时间不大于$t$的前提下课程产生的最小不满意度$g_t$.复杂度$O(nlogn)$,瓶颈是排序. 但是上面那个做法太不优雅了.我们可以发现$g_t$和$f_t$差分之后的数组都是单调不减,也就是$f_t+g_t$差分之后单调不减,也就意味着$f_t+g_t$这个数列是单谷数列.我们在时间范围上三分数列极小值即可. 然后因为三分太慢获得了

[六省联考2017]相逢是问候

相逢是问候 2017-09-09 Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每一个数ai替换为c^ai,即c的ai次方,其中c是输入的一个常数,也就是执行赋值ai=c^ai1 l r求第l个到第r个数的和,也就是输出:sigma(ai),l<=i<=rai因为这个结果可

[六省联考2017]期末考试

4868: [Shoi2017]期末考试 2017-09-03 Description 有n位同学,每位同学都参加了全部的m门课程的期末考试,都在焦急的等待成绩的公布.第i位同学希望在第ti天或之前得知所.有.课程的成绩.如果在第ti天,有至少一门课程的成绩没有公布,他就会等待最后公布成绩的课程公布成绩,每等待一天就会产生C不愉快度.对于第i门课程,按照原本的计划,会在第bi天公布成绩.有如下两种操作可以调整公布成绩的时间:1.将负责课程X的部分老师调整到课程Y,调整之后公布课程X成绩的时间推迟