使用 Scrapy 爬取去哪儿网景区信息

Scrapy 是一个使用 Python 语言开发,为了爬取网站数据,提取结构性数据而编写的应用框架,它用途广泛,比如:数据挖掘、监测和自动化测试。安装使用终端命令 pip install Scrapy 即可。

Scrapy 比较吸引人的地方是:我们可以根据需求对其进行修改,它提供了多种类型的爬虫基类,如:BaseSpider、sitemap 爬虫等,新版本提供了对 web2.0 爬虫的支持。

1 Scrapy 介绍

1.1 组成

  • Scrapy Engine(引擎):负责 Spider、ItemPipeline、Downloader、Scheduler 中间的通讯,信号、数据传递等。
  • Scheduler(调度器):负责接受引擎发送过来的 Request 请求,并按照一定的方式进行整理排列、入队,当引擎需要时,交还给引擎。
  • Downloader(下载器):负责下载 Scrapy Engine(引擎) 发送的所有 Requests 请求,并将其获取到的 Responses 交还给 Scrapy Engine(引擎),由引擎交给 Spider 来处理。
  • Spider(爬虫):负责处理所有 Responses,从中解析提取数据,获取 Item 字段需要的数据,并将需要跟进的 URL 提交给引擎,再次进入 Scheduler(调度器)。
  • Item Pipeline(管道):负责处理 Spider 中获取到的 Item,并进行后期处理,如:详细解析、过滤、存储等。
  • Downloader Middlewares(下载中间件):一个可以自定义扩展下载功能的组件,如:设置代理、设置请求头等。
  • Spider Middlewares(Spider 中间件):一个可以自定扩展和操作引擎和 Spider 中间通信的功能组件,如:自定义 request 请求、过滤 response 等。

总的来说就是:SpiderItem Pipeline 需要我们自己实现,Downloader MiddlewaresSpider Middlewares 我们可以根据需求自定义。

1.2 流程梳理

1)Spider 将需要发送请求的 URL 交给 Scrapy Engine 交给调度器;

2)Scrapy Engine 将请求 URL 转给 Scheduler

3)Scheduler 对请求进行排序整理等处理后返回给 Scrapy Engine

4)Scrapy Engine 拿到请求后通过 Middlewares 发送给 Downloader

5)Downloader 向互联网发送请求,在获取到响应后,又经过 Middlewares 发送给 Scrapy Engine

6)Scrapy Engine 获取到响应后,返回给 SpiderSpider 处理响应,并从中解析提取数据;

7)Spider 将解析的数据经 Scrapy Engine 交给 Item PipelineItem Pipeline 对数据进行后期处理;

8)提取 URL 重新经 Scrapy Engine 交给Scheduler 进行下一个循环,直到无 URL 请求结束。

1.3 Scrapy 去重机制

Scrapy 提供了对 request 的去重处理,去重类 RFPDupeFilterdupefilters.py 文件中,路径为:Python安装目录\Lib\site-packages\scrapy ,该类里面有个方法 request_seen 方法,源码如下:

def request_seen(self, request):
    # 计算 request 的指纹
    fp = self.request_fingerprint(request)
    # 判断指纹是否已经存在
    if fp in self.fingerprints:
        # 存在
        return True
    # 不存在,加入到指纹集合中
    self.fingerprints.add(fp)
    if self.file:
        self.file.write(fp + os.linesep)

它在 Scheduler 接受请求的时候被调用,进而调用 request_fingerprint 方法(为 request 生成一个指纹),源码如下:

def request_fingerprint(request, include_headers=None):
    if include_headers:
        include_headers = tuple(to_bytes(h.lower())
                                 for h in sorted(include_headers))
    cache = _fingerprint_cache.setdefault(request, {})
    if include_headers not in cache:
        fp = hashlib.sha1()
        fp.update(to_bytes(request.method))
        fp.update(to_bytes(canonicalize_url(request.url)))
        fp.update(request.body or b'')
        if include_headers:
            for hdr in include_headers:
                if hdr in request.headers:
                    fp.update(hdr)
                    for v in request.headers.getlist(hdr):
                        fp.update(v)
        cache[include_headers] = fp.hexdigest()
    return cache[include_headers]

在上面代码中我们可以看到

fp = hashlib.sha1()
...
cache[include_headers] = fp.hexdigest()

它为每一个传递过来的 URL 生成一个固定长度的唯一的哈希值。再看一下 __init__ 方法,源码如下:

def __init__(self, path=None, debug=False):
    self.file = None
    self.fingerprints = set()
    self.logdupes = True
    self.debug = debug
    self.logger = logging.getLogger(__name__)
    if path:
        self.file = open(os.path.join(path, 'requests.seen'), 'a+')
        self.file.seek(0)
        self.fingerprints.update(x.rstrip() for x in self.file)

我们可以看到里面有 self.fingerprints = set() 这段代码,就是通过 set 集合的特点(set 不允许有重复值)进行去重。

去重通过 dont_filter 参数设置,如图所示

dont_filterFalse 开启去重,为 True 不去重。

2 实现过程

制作 Scrapy 爬虫需如下四步:

  • 创建项目 :创建一个爬虫项目
  • 明确目标 :明确你想要抓取的目标(编写 items.py)
  • 制作爬虫 :制作爬虫开始爬取网页(编写 xxspider.py)
  • 存储内容 :设计管道存储爬取内容(编写pipelines.py)

我们以爬取去哪儿网北京景区信息为例,如图所示:

2.1 创建项目

在我们需要新建项目的目录,使用终端命令 scrapy startproject 项目名 创建项目,我创建的目录结构如图所示:

  • spiders 存放爬虫的文件
  • items.py 定义数据类型
  • middleware.py 存放中间件
  • piplines.py 存放数据的有关操作
  • settings.py 配置文件
  • scrapy.cfg 总的控制文件

2.2 定义 Item

Item 是保存爬取数据的容器,使用的方法和字典差不多。我们计划提取的信息包括:area(区域)、sight(景点)、level(等级)、price(价格),在 items.py 定义信息,源码如下:

import scrapy

class TicketspiderItem(scrapy.Item):
    area = scrapy.Field()
    sight = scrapy.Field()
    level = scrapy.Field()
    price = scrapy.Field()
    pass

2.3 爬虫实现

在 spiders 目录下使用终端命令 scrapy genspider 文件名 要爬取的网址 创建爬虫文件,然后对其修改及编写爬取的具体实现,源码如下:

import scrapy
from ticketSpider.items import TicketspiderItem

class QunarSpider(scrapy.Spider):
    name = 'qunar'
    allowed_domains = ['piao.qunar.com']
    start_urls = ['https://piao.qunar.com/ticket/list.htm?keyword=%E5%8C%97%E4%BA%AC&region=&from=mpl_search_suggest']

    def parse(self, response):
        sight_items = response.css('#search-list .sight_item')
        for sight_item in sight_items:
            item = TicketspiderItem()
            item['area'] = sight_item.css('::attr(data-districts)').extract_first()
            item['sight'] = sight_item.css('::attr(data-sight-name)').extract_first()
            item['level'] = sight_item.css('.level::text').extract_first()
            item['price'] = sight_item.css('.sight_item_price em::text').extract_first()
            yield item
        # 翻页
        next_url = response.css('.next::attr(href)').extract_first()
        if next_url:
            next_url = "https://piao.qunar.com" + next_url
            yield scrapy.Request(
                next_url,
                callback=self.parse
            )

简单介绍一下:

  • name:爬虫名
  • allowed_domains:允许爬取的域名
  • atart_urls:爬取网站初始请求的 url(可定义多个)
  • parse 方法:解析网页的方法
  • response 参数:请求网页后返回的内容

yield

在上面的代码中我们看到有个 yield,简单说一下,yield 是一个关键字,作用和 return 差不多,差别在于 yield 返回的是一个生成器(在 Python 中,一边循环一边计算的机制,称为生成器),它的作用是:有利于减小服务器资源,在列表中所有数据存入内存,而生成器相当于一种方法而不是具体的信息,占用内存小。

爬虫伪装

通常需要对爬虫进行一些伪装,关于爬虫伪装可通过【Python 爬虫(一):爬虫伪装】做一下简单了解,这里我们使用一个最简单的方法处理一下。

  • 使用终端命令 pip install scrapy-fake-useragent 安装
  • 在 settings.py 文件中添加如下代码:
DOWNLOADER_MIDDLEWARES = {
    # 关闭默认方法
    'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None,
    # 开启
    'scrapy_fake_useragent.middleware.RandomUserAgentMiddleware': 400,
}

2.4 保存数据

我们将数据保存到本地的 csv 文件中,csv 具体操作可以参考:CSV 文件读写,下面看一下具体实现。

首先,在 pipelines.py 中编写实现,源码如下:

import csv

class TicketspiderPipeline(object):
    def __init__(self):
        self.f = open('ticker.csv', 'w', encoding='utf-8', newline='')
        self.fieldnames = ['area', 'sight', 'level', 'price']
        self.writer = csv.DictWriter(self.f, fieldnames=self.fieldnames)
        self.writer.writeheader()
    def process_item(self, item, spider):
        self.writer.writerow(item)
        return item

    def close(self, spider):
        self.f.close()

然后,将 settings.py 文件中如下代码:

ITEM_PIPELINES = {
    'ticketSpider.pipelines.TicketspiderPipeline': 300,
}

放开即可。

2.5 运行

我们在 settings.py 的同级目录下创建运行文件,名字自定义,放入如下代码:

from scrapy.cmdline import execute
execute('scrapy crawl 爬虫名'.split())

这个爬虫名就是我们之前在爬虫文件中的 name 属性值,最后在 Pycharm 运行该文件即可。

参考:

http://www.scrapyd.cn/doc/
https://www.liaoxuefeng.com/wiki/897692888725344/923029685138624

完整代码请关注文末公众号,后台回复 qs 获取。

原文地址:https://www.cnblogs.com/ityard/p/11875474.html

时间: 2024-10-30 02:35:06

使用 Scrapy 爬取去哪儿网景区信息的相关文章

利用Scrapy爬取1905电影网

本文将从以下几个方面讲解Scrapy爬虫的基本操作 Scrapy爬虫介绍 Scrapy安装 Scrapy实例--爬取1905电影网 相关资料 Scrapy 爬虫介绍 Scrapy是Python开发的一个快速,高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据.Scrapy用途广泛,可以用于数据挖掘.监测和自动化测试. Scrapy吸引人的地方在于它是一个框架,任何人都可以根据需求方便的修改.它也提供了多种类型爬虫的基类,如BaseSpider.sitemap爬虫等,最

Python的scrapy之爬取链家网房价信息并保存到本地

因为有在北京租房的打算,于是上网浏览了一下链家网站的房价,想将他们爬取下来,并保存到本地. 先看链家网的源码..房价信息 都保存在 ul 下的li 里面 ? 爬虫结构: ? 其中封装了一个数据库处理模块,还有一个user-agent池.. 先看mylianjia.py # -*- coding: utf-8 -*- import scrapy from ..items import LianjiaItem from scrapy.http import Request from parsel i

Python爬虫从入门到放弃(十八)之 Scrapy爬取所有知乎用户信息(上)

爬取的思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账号信息和被关注信息的关注列表,爬取这些用户的信息,通过这种递归的方式从而爬取整个知乎的所有的账户信息.整个过程通过下面两个图表示: 爬虫分析过程 这里我们找的账号地址是:https://www.zhihu.com/people/excited-vczh/answers我们抓取的大V账号的主要信息是:

Python爬虫从入门到放弃(十九)之 Scrapy爬取所有知乎用户信息(下)

在上一篇文章中主要写了关于爬虫过程的分析,下面是代码的实现,完整代码在:https://github.com/pythonsite/spider items中的代码主要是我们要爬取的字段的定义 class UserItem(scrapy.Item): id = Field() name = Field() account_status = Field() allow_message= Field() answer_count = Field() articles_count = Field()

25.爬取去哪儿网的商品数据-2

需要注意的问题: 1.首先要获取dep和query参数.2.分析请求的url地址变化,获取routeCount参数. 我配置代码出现的问题: 1.url拼接问题,网站拒绝访问,模拟请求参数设置user-agent和cookie2.获取routeCount参数会报异常,因为有的url返回的数据中无这个参数信息.异常如下: 正常如下: 只有获取了routeCount参数,才能接下来获取所有url的内容信息. 原文地址:https://www.cnblogs.com/lvjing/p/9994340.

爬取去哪网景点数据

import urllib.parse import urllib.request import requests from bs4 import BeautifulSoup import csv import time import re sd=['名字','地址','价格','月销量','景点概述'] with open('C:\\Users\\惠普\\Desktop\\ac2.csv','a+',newline='',encoding='utf-8')as f: writers=csv.w

用scrapy爬取京东商城的商品信息

软件环境: 1 gevent (1.2.2) 2 greenlet (0.4.12) 3 lxml (4.1.1) 4 pymongo (3.6.0) 5 pyOpenSSL (17.5.0) 6 requests (2.18.4) 7 Scrapy (1.5.0) 8 SQLAlchemy (1.2.0) 9 Twisted (17.9.0) 10 wheel (0.30.0) 1.创建爬虫项目 2创建京东网站爬虫. 进入爬虫项目目录,执行命令: scrapy genspider jd www

43.scrapy爬取链家网站二手房信息-1

首先分析:目的:采集链家网站二手房数据1.先分析一下二手房主界面信息,显示情况如下: url = https://gz.lianjia.com/ershoufang/pg1/显示总数据量为27589套,但是页面只给返回100页的数据,每页30条数据,也就是只给返回3000条数据. 2.再看一下筛选条件的情况: 100万以下(775):https://gz.lianjia.com/ershoufang/pg1p1/(p1是筛选条件参数,pg1是页面参数) 页面返回26页信息100万-120万(47

python 学习 - 爬虫入门练习 爬取链家网二手房信息

import requests from bs4 import BeautifulSoup import sqlite3 conn = sqlite3.connect("test.db") c = conn.cursor() for num in range(1,101): url = "https://cs.lianjia.com/ershoufang/pg%s/"%num headers = { 'User-Agent': 'Mozilla/5.0 (Windo