【bzoj1051】 [HAOI2006]受欢迎的牛 tarjan缩点判出度算点数

【bzoj1051】 [HAOI2006]受欢迎的牛

2014年1月8日7450

Description

每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头牛被所有的牛认为是受欢迎的。

Input

第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B)

Output

一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1【数据范围】
10%的数据N<=20, M<=50
30%的数据N<=1000,M<=20000
70%的数据N<=5000,M<=50000
100%的数据N<=10000,M<=50000

代码

#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <queue>
#include <typeinfo>
#include <map>
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
#define inf 10000000
inline ll read()
{
    ll x=0,f=1;
    char ch=getchar();
    while(ch<‘0‘||ch>‘9‘)
    {
        if(ch==‘-‘)f=-1;
        ch=getchar();
    }
    while(ch>=‘0‘&&ch<=‘9‘)
    {
        x=x*10+ch-‘0‘;
        ch=getchar();
    }
    return x*f;
}
//***************************************************************
int head[10001],dfn[10001];
struct ss
{
    int to,next;
    int hea;
} e[10001*5];
int t=1;
int bcnt;
int cnt;
int belong[10001];
int hav[10001];
int out[10001];
int n,m,top,low[10001],stacks[10001];
int vis[10001];
int instack[10001];
void add(int u,int v)
{
    e[t].hea=u;
    e[t].to=v;
    e[t].next=head[u];
    head[u]=t++;
}
void dfs(int u)
{
    dfn[u]=low[u]=++cnt;
    stacks[++top]=u;
    instack[u]=1;
    vis[u]=1;
    for(int i=head[u];i;i=e[i].next){
        if(!vis[e[i].to]){
            dfs(e[i].to);
            low[u]=min(low[u],low[e[i].to]);
        }
        else if(instack[u]){low[u]=min(low[u],dfn[e[i].to]);}
    }
    int v=-1;
    if(low[u]==dfn[u]){
        bcnt++;
        while(u!=v){
           v=stacks[top--];
           instack[v]=0;
           belong[v]=bcnt;
           hav[bcnt]++;
           //vis[v]=0;
        }
    }
}
void rebuild(){
    for(int i=1;i<=m;i++){
        if(belong[e[i].hea]!=belong[e[i].to])
            out[belong[e[i].hea]]++;
    }
}
void tarjan(){

      for(int i=1;i<=n;i++){
        if(!vis[i])dfs(i);
      }
     rebuild();
}
void work()
{
    int res=0,ans;
    //cout<<bcnt<<endl;
    for(int i=1;i<=bcnt;i++){
        if(out[i]==0)
        {
            res++;
            ans=i;
        }
       /// printf("%d\n",hav[i]);
    }
    if(res==1){
        printf("%d\n",hav[ans]);
    }
    else printf("0\n");
}
int main()
{

    scanf("%d%d",&n,&m);
    int a,b;
    for(int i=1; i<=m; i++)
    {
        scanf("%d%d",&a,&b);
        add(a,b);
    }
    tarjan();
    work();
    return 0;
}
时间: 2024-12-30 04:01:40

【bzoj1051】 [HAOI2006]受欢迎的牛 tarjan缩点判出度算点数的相关文章

bzoj 1051: [HAOI2006]受欢迎的牛 tarjan缩点

1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2092  Solved: 1096[Submit][Status] Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头牛被所有的牛认为是受欢迎的. Input 第一行两个数

bzoj1051 [HAOI2006]受欢迎的牛

1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MB Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛认为是受欢迎的. Input 第一行两个数N,M. 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可

【BZOJ1051】1051: [HAOI2006]受欢迎的牛 tarjan求强连通分量+缩点

Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头牛被所有的牛认为是受欢迎的. Input 第一行两个数N,M. 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B) Output 一个数,即有多少头牛被所有的牛认为是受欢迎的. Sample Input 3 3

[BZOJ1051] [HAOI2006] 受欢迎的牛 (强联通分量)

Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛认为是受欢迎的. Input 第一行两个数N,M. 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可 能出现多个A,B) Output 一个数,即有多少头牛被所有的牛认为是受欢迎的. Sample Input 3

[BZOJ 1051][HAOI 2006]受欢迎的牛(tarjan缩点)

http://www.lydsy.com:808/JudgeOnline/problem.php?id=1051 唔...这题好像在POJ上见过? 比较水的题,很好想出思路.牛和牛之间的关系就像有向图,牛a喜欢牛b相当于建立有向边a->b,然后在这个有向图中,每个强连通分量里的牛们相当于是相互喜欢的,把这个图缩点成DAG,DAG里如果有且仅有一个出度为0的点,则这个点对应强连通分量里的所有牛都是受欢迎的牛,如果没有出度为0的点,当然就没受欢迎的牛了,如果出度为0的点的个数大于1,则每个出度为0的

BZOJ1051|HAOI2006受欢迎的牛|强连通分量

Description每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头牛被所有的牛认为是受欢迎的.Input第一行两个数N,M. 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B)Output一个数,即有多少头牛被所有的牛认为是受欢迎的.Sample Input3 31 22 12

【强连通分量】Bzoj1051 HAOI2006 受欢迎的牛

Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头牛被所有的牛认为是受欢迎的. Solution 那么对于x如果可以也就是所有节点都可以到达x,如果无环也就是x要无出度且无出度的点数正好为1(出边连点必到不了x). 然而这是有环的,那么把强连通分量缩起来就行了. Code 我这个傻逼现在才会求强连通分量. 而且还

P2341 [HAOI2006]受欢迎的牛[SCC缩点]

题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的"喜欢"是可以传递的--如果A喜 欢B,B喜欢C,那么A也喜欢C.牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你 算出有多少头奶牛可以当明星. 解析 又是一道水题emmm. 容易发现,缩点之后的图中,能当明星的最多只有一个点,超过一个就不合法. 如下图中的红色点中所有奶牛都可以当明星. 而下面这种情况,因为紫色节点的存在,显然不合法. 如果缩点

BZOJ 1051: [HAOI2006]受欢迎的牛 强连通缩点

题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1051 题解: 强连通缩点得到DAG图,将图转置一下,对入度为零的点跑dfs看看能不能访问到所有的点. 代码: #include<iostream> #include<cstdio> #include<vector> #include<stack> #include<algorithm> #include<cstring> u