斐波那契数列 矩阵求法 优化

矩阵乘法+空间换时间(减少乘法,取模运算)

  数列的递推公式为:f(1)=1,f(2)=2,f(n)=f(n-1)+f(n-2)(n>=3)

   用矩阵表示为:

  进一步,可以得出直接推导公式:

static int Fibonacci(int n)
     {
       if (n <= 1)
         return n;

       int[,] f = { { 1, 1 }, { 1, 0 } };
       Power(f, n - 1);

       return f[0, 0];
     }

     static void Power(int[,] f, int n)
     {
       if (n <= 1)
         return;

       int[,] m = { { 1, 1 }, { 1, 0 } };

       Power(f, n / 2);
       Multiply(f, f);

       if (n % 2 != 0)
         Multiply(f, m);
     }

     static void Multiply(int[,] f, int[,] m)
     {
       int x = f[0, 0] * m[0, 0] + f[0, 1] * m[1, 0];
       int y = f[0, 0] * m[0, 1] + f[0, 1] * m[1, 1];
       int z = f[1, 0] * m[0, 0] + f[1, 1] * m[1, 0];
       int w = f[1, 0] * m[0, 1] + f[1, 1] * m[1, 1];

       f[0, 0] = x;
       f[0, 1] = y;
       f[1, 0] = z;
      f[1, 1] = w;
     }

  由于矩阵乘法满足结合律,在程序中可以事先给定矩阵的64,32,16,8,4,2,1次方,加快程序的执行时间。(有些题目需要取模运算,也可以事先进行一下)。给定的矩阵次幂,与二进制有关是因为,如下的公式存在解满足Xi={0或1}:

为了保证解满足 Xi={0或1},对上述公式的求解从右向左,即求解顺序为Xn,Xn-1,Xn-2,....,X1,X0。

  完整代码实现如下:

///求解fac(n)%100000,其中n为大于等于3的正整数
#include<stdio.h>
#include<math.h>
long long fac_tmp[6][4]={   ///存放矩阵次幂
                    ///位置:00 01 10 11
                   {24578,78309,78309,46269},   ///32次幂%100000
                   {1597,987,987,610},  ///16次幂%100000
                   {34,21,21,13},   ///8次幂%100000
                   {5,3,3,2},   ///4次幂%100000
                   {2,1,1,1},   ///2次幂%100000
                   {1,1,1,0},   ///1次幂%100000
                   };
void fac(int);

int main()
{
    int n;
    scanf("%d",&n);
    fac(n);
    return 1;
}

void fac(int k) ///k>=3
{
    int i;
    long long t00=1,t01=1,t10=1,t11=0;  ///表示矩阵的1次幂
    long long a,b,c,d;
    k=k-3;  ///公式中是n-2次幂,(t00,t01,t10,t11)表示1次幂。所以一共减3次
    for(i=k;i>=32;i=i-32)   ///对于大于等于32的k;
    {
        a=(t00*fac_tmp[0][0]+t01*fac_tmp[0][2])%100000;
        b=(t00*fac_tmp[0][1]+t01*fac_tmp[0][3])%100000;
        c=(t10*fac_tmp[0][0]+t11*fac_tmp[0][2])%100000;
        d=(t10*fac_tmp[0][1]+t11*fac_tmp[0][3])%100000;
        t00=a;  t01=b;  t10=c;t11=d;
    }

    i=4;
    while(i>=0)    ///对于小于32的k(16,8,4,2,1);
    {
        if(k>=(long long)pow(2,i))  ///如果k大于某一个2的次幂
        {

            a=(t00*fac_tmp[5-i][0]+t01*fac_tmp[5-i][2])%100000; ///(5-i):矩阵的2的i次幂在数组fac_tmp中的位置为fac_tmp[5-i]
            b=(t00*fac_tmp[5-i][1]+t01*fac_tmp[5-i][3])%100000;
            c=(t10*fac_tmp[5-i][0]+t11*fac_tmp[5-i][2])%100000;
            d=(t10*fac_tmp[5-i][1]+t11*fac_tmp[5-i][3])%100000;
            t00=a;  t01=b;  t10=c;t11=d;
            k=k-(int)pow(2,i);
        }
        i--;
    }

    a=(t00*2+t01*1)%100000;
    printf("%lld\n",a);
}
时间: 2024-10-07 11:25:37

斐波那契数列 矩阵求法 优化的相关文章

HDU 4549 M斐波那契数列 ( 矩阵快速幂 + 费马小定理 )

HDU 4549 M斐波那契数列 (  矩阵快速幂 + 费马小定理  ) 题意:中文题,不解释 分析:最好的分析就是先推一推前几项,看看有什么规律 #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef __int64 LL; #define CLR( a, b ) memset( a, b, sizeof(a) ) #define MOD 100000

HDU 4549 M斐波那契数列(矩阵快速幂&amp;费马小定理)

ps:今天和战友聊到矩阵快速幂,想到前几天学长推荐去刷矩阵专题,挑了其中唯一一道中文题,没想到越过山却被河挡住去路... 题目链接:[kuangbin带你飞]专题十九 矩阵 R - M斐波那契数列 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u 题意 Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2]

斐波那契数列——矩阵的幂求解

题目: 斐波那契数列的递推公式如下: F(0) = 0; F(1) = 1; F(n + 2) = F(n + 1) + F(n); 求数列的第N项的值对10000取余的结果.( 0<=n<= 10^16) 求解斐波那契数列,如果N比较小的情况下,可以直接打表求解,但是对于N很大的情况下,并不适用. 所以,有些人会想到高精度计算,但是,N达到10^5以上时,时间复杂度难以想象,每计算一个数,需要进行高精度加法.然而还有求解对10000的取余的值. 我们可以用矩阵的幂来求解.斐波那契数列的递推公

[codevs]1250斐波那契数列&lt;矩阵dp&gt;

题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30000. 输入描述 Input Description 第一行一个数T(1<=T<=10000). 以下T行,每行两个数,n,q(n<=109, 1<=q<=30000) 输出描述 Output Description 文件包含T行,每行对应一个答案. 样例输入 Sample I

洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2: 55 说明

UVA10299- Modular Fibonacci(斐波那契数列+矩阵快速幂)

题目链接 题意:给出n和m,求出f(n) % m, f(x)为斐波那契数列. 思路:因为n挺大的,如果直接利用公式计算很有可能会TLE,所以利用矩阵快速幂求解,|(1, 1), (1, 0)| * |f(n - 1), f(n - 2)| = |f(n), f(n - 1)|,所以求f(n)相当于|f(1), f(0)|乘上n - 1次的|(1, 1), (1, 0)|. 代码: #include <iostream> #include <cstdio> #include <

[ZJOI2011]细胞——斐波那契数列+矩阵加速+dp

Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的(即使总数目相同). 所以先考虑第一次分裂后,一个固定小球体数量的情况: 2.第一次分裂后,最后的小球体数量固定.想要方案数不同,必须连接方式不同. 可以列出dp式子,f[n](以n结尾砍一刀)=f[n-2]+f[n-3]+...+f[2]+f[0],而f[0]=1,f[1]=0 而fibo[n]-1

【题解】佳佳的斐波那契数列(矩阵)

[题解]佳佳的斐波那契数列 题目描述 求\(\Sigma i\times fib[i]\)的值 数据范围 \(n\le2^{31}-1\) \(Solution\) 看数据范围就会做的题... \[ 设 \f(n):=ib[n] \g(n)=nf(n) \s(n)=\Sigma^{i\le n}_{i=1}g(n) \] 然后 \[ f(i)=f(i-1)+f(i-2) \s(i)=s(i-1)+g(i) \] 不好求\(g\),但是可以直接这样 \[ g(i)=i\times f(i)\=i\

P1349 广义斐波那契数列(矩阵乘法)

题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatrix} p&q\1&0\\end{bmatrix}^{n-2}=\begin{bmatrix}f_n\\f_{n-1} \end{bmatrix}\] 水题 代码 #include <bits/stdc++.h> #define int long long using namesp