大数据入门推荐 - 数据之巅 大数据革命,历史、现实与未来等五本PDF

扫码时备注或说明中留下邮箱
付款后如未回复请至https://shop135452397.taobao.com/
联系店主

原文地址:https://www.cnblogs.com/jiahuafu/p/9413252.html

时间: 2024-10-19 07:34:37

大数据入门推荐 - 数据之巅 大数据革命,历史、现实与未来等五本PDF的相关文章

大数据入门-记录

一.大数据分析的五个基本方面 1.可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了. 2.数据挖掘算法 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些 被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值.另

如何区分三个大数据热门职业——数据科学家、数据工程师、数据分析师

随着大数据的愈演愈热,相关大数据的职业也成为热门,给人才发展带来带来了很多机会.数据科学家.数据工程师.数据分析师已经成为大数据行业最热门的职位.它们是如何定义的?具体是做什么工作的?需要哪些技能?让我们一起来看看吧. 1.这3个职业是如何定位的? 数据科学家是指能采用科学方法.运用数据挖掘工具对复杂多量的数字.符号.文字.网址.音频或视频等信息进行数字化重现与认识,并能寻找新的数据洞察的工程师或专家(不同于统计学家或分析师). 数据工程师是如何定义的 数据工程师一般被定义成"深刻理解统计学科的

大数据入门学习必读好书推荐,请收藏!

身处于一个大数据时代,大数据无疑是近期最时髦的词汇了. 不管是云计算.社交网络,还是物联网.移动互联网和智慧城市,都要与大数据搭上联系. 随着云计算.移动互联网和物联网等新一代信息技术的创新和应用普及.学习大数据,除了网课,一些经典的技术书籍是非常实用且有帮助的. 为了跟上技术更迭的节奏,不落人后,最好的方式是继续刷新自己的知识,同时保持上手的经验.在这行业中要取得成功,需要完美的项目经验和技能组合.尽管网上有大量的资源,我们仍要专门推荐一些好的实体书籍. 大数据书单 <Machine Lear

大数据入门基础系列之初步认识大数据生态系统圈(博主推荐)

之前在微信公众平台里写过 大数据入门基础系列之初步认识hadoop生态系统圈 http://mp.weixin.qq.com/s/KE09U5AbFnEdwht44FGrOA 大数据入门基础系列之初步认识大数据生态系统圈 1.概述 最近收到一些同学和朋友的邮件,说能不能整理一下 Hadoop 生态圈的相关内容,然后分享一些,我觉得这是一个不错的提议,于是,花了一些业余时间整理了 Hadoop 的生态系统,并将其进行了归纳总结,进而将其以表格的形式进行了罗列.涉及的内容有以下几点: 分布式文件系统

大数据入门:各种大数据技术介绍

转自:http://www.aboutyun.com/thread-7569-1-1.html 大数据我们都知道hadoop,可是还会各种各样的技术进入我们的视野:Spark,Storm,impala,让我们都反映不过来.为了能够更好的架构大数据项目,这里整理一下,供技术人员,项目经理,架构师选择合适的技术,了解大数据各种技术之间的关系,选择合适的语言.我们可以带着下面问题来阅读本文章:1.hadoop都包含什么技术2.Cloudera公司与hadoop的关系是什么,都有什么产品,产品有什么特性

大数据入门学习路线分享,请大家收下

大数据的学习技术点Hadoop核心(1) 分布式存储基石:HDFSHDFS简介 入门演示 构成及工作原理解析:数据块,NameNode, DataNode.数据写入与读取过程.数据复制.HA方案.文件类型. HDFS常用设置 Java API代码演示(2) 分布式计算基础:MapReduceMapReduce简介.编程模型.Java API 介绍.编程案例介绍.MapReduce调优(3) Hadoop集群资源管家:YARNYARN基本架构 资源调度过程 调度算法 YARN上的计算框架离线计算(

大数据入门小知识

之前写过大数据入门小知识和大数据入门小知识进阶篇,今天为大家带来大数据入门小知识高阶篇. 推荐一个大数据学习群 119599574晚上20:10都有一节[免费的]大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享,你愿意来学习吗? 大数据入门小知识高阶篇,主要讲述的是因为大数据而衍生出来的一系列技术与科技创新. 说到因为大数据而衍生出来的一系列技术与科技创新,相信我们首先都会想到人工智能(Artificial Intelligence),英文

大数据入门,到底要怎么学习大数据?

很多人都知道大数据很火,就业很好,薪资很高,想往大数据方向发展.但该学哪些技术,学习路线是什么样的呢? 其实就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控.大数据开发/设计/架构.数据分析/挖掘.请不要问我哪个好学,哪个钱多. 先说一下大数据的4V特征: 数据量大,TB->PB 数据类型繁多,结构化.非结构化文本.日志.视频.图片.地理位置等: 商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来: 处理时效性高,海量数据的处理需求不再局限在离线计算

大数据入门学习者主要分为哪几类,从业方向有哪些?

人才荒”.“高考热门专业”.“需求大”.“缺口150万人”.“稀缺职位”.“年薪百万”,这些词汇成为当下网络媒体和社交人群提到大数据人才时,提到最多的词汇.当前,国家战略的支持.大数据技术的快速发展,催生了大量大数据应用产业.眼下不少就业者已经蠢蠢欲动想要加入到最时髦的信息技术行业“大数据”. 大数据分析显示,“怎样进行大数据的入门级学习?“.“零基础如何学习大数据?”.“想学习大数据要掌握些什么知识?”.“如何进入大数据领域,学习路线是什么?”是目前大数据学习者关注度最高的话题. 哪些人期望学