hdu 1028 Sample Ignatius and the Princess III (母函数)

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 25929    Accepted Submission(s): 17918

Problem Description

"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

Input

The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.

Output

For each test case, you have to output a line contains an integer P which indicate the different equations you have found.

Sample Input
4
10
20

Sample Output
5
42
627

C/C++:

 1 #include <map>
 2 #include <queue>
 3 #include <cmath>
 4 #include <vector>
 5 #include <string>
 6 #include <cstdio>
 7 #include <cstring>
 8 #include <climits>
 9 #include <iostream>
10 #include <algorithm>
11 #define INF 0x3f3f3f3f
12 #define LL long long
13 using namespace std;
14 const int MAX = 2e2 + 10;
15
16 int n, ans[MAX], temp[MAX];
17
18 void calc()
19 {
20     for (int i = 0; i <= 130; ++ i)
21         ans[i] = 1, temp[i] = 0;
22     for (int i = 2; i <= 130; ++ i)
23     {
24         for (int j = 0; j <= 130; ++ j)
25             for (int k = 0; j + k <= 130; k += i)
26                 temp[j + k] += ans[j];
27         for (int j = 0; j <= 130; ++ j)
28             ans[j] = temp[j], temp[j] = 0;
29     }
30 }
31
32 int main()
33 {
34     calc();
35     while (~scanf("%d", &n))
36         printf("%d\n", ans[n]);
37     return 0;
38 }

原文地址:https://www.cnblogs.com/GetcharZp/p/9557626.html

时间: 2024-10-13 11:13:31

hdu 1028 Sample Ignatius and the Princess III (母函数)的相关文章

HDU 1028 Ignatius and the Princess III(母函数)

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 15794    Accepted Submission(s): 11138 Description "Well, it seems the first problem is too easy. I will let you kno

Ignatius and the Princess III(母函数)

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 16028    Accepted Submission(s): 11302 Problem Description "Well, it seems the first problem is too easy. I will let

HDU1028 Ignatius and the Princess III 母函数

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 25867    Accepted Submission(s): 17879 Problem Description "Well, it seems the first problem is too easy. I will let

HDU Ignatius and the Princess III (母函数)

Problem Description "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says. "The second problem is, given an positive integer N, we define an equation like this:  N=a[1]+a[2]+a[3]+...+a[

1028:Ignatius and the Princess III

本题应该有两种方法: 1.母函数法 2.递推法 母函数不了解,待充分了解之后,再进行补充! 这里为递推实现的方法: 思路: 定义:n为要拆分的整数: k为拆分的项数: f[n][k]代表 n的整数拆分中,最大项不超过k的方案数. 每一个整数n的拆分中,总有一项拆分为自己,即:n = n; 我们将其表示为f[n][1],而且f[n][1] = 1; 又,每一个整数n的拆分中,总有一项拆分为n个1,即:n = 1 + 1 + ...... + 1(n个1的加和); 我们将其表示为f[0][0],且f

hdu 1028 Ignatius and the Princess III 【整数划分】

Ignatius and the Princess III                                                                                       Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 15730    Accepted Submission(

hdu 1028 Ignatius and the Princess III(整数划分)

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 12731    Accepted Submission(s): 8999 Problem Description "Well, it seems the first problem is too easy. I will let

HDU 1028 Ignatius and the Princess III dp

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 一道经典题,也是算法设计与分析上的一道题,可以用递推,动态规划,母函数求解,我用的是动态规划,也就是递推的变形. dp[i][j]表示数i的划分中最大数不超过j的划分的个数 状态转移方程: if(j > i) dp[i][j] = dp[i][i]; if(j == i) dp[i][j] = dp[i][j - 1] + 1; if(j < i) dp[i][j] = dp[i][j -

hdu acm 1028 数字拆分Ignatius and the Princess III

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 11810    Accepted Submission(s): 8362 Problem Description "Well, it seems the first problem is too easy. I will let