让opencv输出人脸检测的得分(置信率)

最近项目略多,其中一个需要找出一些和脸比较像但是不是脸的负样本,想用opencv的人脸检测器检测到的错误脸作为这样的负样本。

但是国内(包括国外)居然几乎没有相关的资料如何输出detectMultiScale()的置信率或者说是人脸得分

所以写一篇小小的总结供有相关需求的人参考。

转载需注明:http://www.cnblogs.com/sciencefans/

看了下人脸识别函数的opencv的源码

\sources\modules\objdetect\src\cascadedetect.cpp

中detectMultiScale有两个重载,第二个重载在opencv的开发文档里居然只字未提:

void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
                                          vector<int>& rejectLevels,
                                          vector<double>& levelWeights,
                                          double scaleFactor, int minNeighbors,
                                          int flags, Size minObjectSize, Size maxObjectSize,
                                          bool outputRejectLevels )

发现他有个rejectLevels和levelWeight这两个引用参数,看名字感觉是一种得分输出。

google了一下发现国外问的人不少但是基本没啥解释(或者是我没认真找?)

然后看了下它调用的cvHaarDetectObjectsForROC()的源码实现,大概懂了这俩vectors是在干什么的。

先上结论:确实和人脸得分有关。

首先应该明白一点detectMultiScale()这个方法是一个级联分类器,使用了boosting的方法。所以输入图像要经过层层(级级)选拔,留到最后的才是真汉子(正样本)

rejectLevels就是代表在第几层被out的。如果是最后一层(在lbpcascade_frontalface.xml中是20,具体要看xml中的叙述)被out,则说明很可能是正样本。

为啥说很可能呢?

因为还有个参数:levelWeight。即使是在最后一层被out的,levelWeight很小甚至是负数,也可以看成是负样本。

实际上很多负样本正是在最后一层被out的。

见下图:

我这里只截取了level在20才out的框。输出了他们的levelWeight。是脸的地方最大是4.23多,其他的就很小。不用过多解释了吧~

所以这个函数的原理是这样的(个人理解,有错误请指教):

首先一个level一个level地测试样本,然后每一个level给一个对应的得分,也就是levelWeight,如果这个weight低于或者高于对应level的threshold,则被抛弃。

坚持到最后一个level并且在最后一个level仍然满足threshold的框就是正确的脸(正样本)。

所以,人脸的分应该是这样:level越大,分数越高,在相同的level,levelWeight越大分数越高。

但是实际上真正的人脸都是能坚持到level20(最后一个level)的,所以只比对最后一个level的所有大于1的框的levelWeight进行比对就可以知道脸的得分啦~

这里给出所有level被gg的框的图:

最后给出灰常短小精悍的demo的源代码:

 1 #include <opencv2\opencv.hpp>
 2 #include <iostream>
 3 #include <vector>
 4 #include <fstream>
 5 #include <math.h>
 6 using namespace std;
 7 using namespace cv;
 8 const string xmlpath = "lbpcascade_frontalface.xml";
 9 CascadeClassifier face_cc;
10
11 int tic = 0;
12
13 void detect(Mat img){
14     vector<Rect> faces;
15     vector<int> rejLevel;
16     vector<double> levelW;
17     Mat grayimg;
18     cvtColor(img, grayimg, CV_RGB2GRAY);
19     equalizeHist(grayimg, grayimg);
20     int minl = min(img.rows, img.cols);
21     face_cc.detectMultiScale(grayimg, faces, rejLevel, levelW, 1.1, 3, 0, Size(), Size(), true);
22     //face_cc.detectMultiScale(grayimg, faces, 1.1);
23     for ( int i = 0; i < faces.size(); i++ )
24     {
25         if ( rejLevel[i] < 00 )
26         {
27             continue;
28         }
29         stringstream text1, text2;
30         text1 << "rejLevel:" << rejLevel[ i ];
31         text2 << "levelW:" << levelW[ i ];
32         string ttt = text1.str();
33         rectangle(img, faces[ i ], Scalar(255, 255, 0), 2, 8, 0);
34         putText(img, ttt, cvPoint(faces[ i ].x, faces[ i ].y - 3), 1, 1, Scalar(0,255,255));
35         ttt = text2.str();
36         putText(img, ttt, cvPoint(faces[ i ].x, faces[ i ].y + 12), 1, 1, Scalar(255, 0, 255));
37     }
38     imshow("IMG", img);
39     waitKey(0);
40 }
41
42 int main(){
43     if ( !face_cc.load(xmlpath) )
44     {
45         cout << "load error!\n";
46         return -1;
47     }
48     ifstream pathin;
49     pathin.open("imgpath.txt");
50     string t;
51     while ( pathin >> t && tic < 10000)
52     {
53         Mat img = imread(t);
54         detect(img);
55     }
56     pathin.close();
57     return 0;
58 }
时间: 2024-10-13 10:59:38

让opencv输出人脸检测的得分(置信率)的相关文章

C++开发人脸性别识别教程(4)——OpenCv的人脸检测函数

这个项目主要包含三部分:人脸检测.特征提取.性别分类: 这篇博客中我们重点介绍OpenCv的人脸检测函数.这篇博客我们先不提MFC,而是在win32控制台下编写一段人脸检测的程序. 一.开启摄像头 我们先讲解如何通过摄像头来采集图像,这听起来更有实际意义. 1.新建工程并配置OpenCv(注意工程类型选择win32控制台应用程序): 2.包含头文件 OpenCv2.x版本包含头文件非常方便,一句话搞定: #include <opencv2\opencv.hpp> using namespace

基于opencv的人脸检测的web应用

参考资料 https://github.com/bsdnoobz/web-based-face-detect http://opencv-code.com/projects/web-based-interface-for-face-detection-with-opencv/ http://www.cnblogs.com/findingsea/archive/2012/03/31/2427833.html 流程如下图 背景知识 php调用exe的返回 <html> <body> &

python配置opencv实现人脸检测

模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和python的比较新的版本,推荐opencv2.4.X和python2.7.X. 直接去官网下载就ok了,python安装时一路next就行,下载的opencv.exe

基于openCV实现人脸检测

openCV的人脸识别主要通过Haar分类器实现,当然,这是在已有训练数据的基础上.openCV安装在 opencv/opencv/sources/data/haarcascades_cuda(或haarcascades)中存在预先训练好的物体检测器(xml格式),包括正脸.侧脸.眼睛.微笑.上半身.下半身.全身等. openCV的的Haar分类器是一个监督分类器,首先对图像进行直方图均衡化并归一化到同样大小,然后标记里面是否包含要监测的物体.它首先由Paul Viola和Michael Jon

python中使用Opencv进行人脸检测

这两天学习了人脸识别,看了学长写的代码,边看边码边理解搞完了一边,再又是自己靠着理解和记忆硬码了一边,感觉还是很生疏,就只能来写个随笔加深一下印象了. 关于人脸识别,首先需要了解的是级联分类器CascadeClassifier,它可以它既可以是Haar特征,也可以是LBP特征的分类器,可以加载OpenCV所提供的库当中的.xml文件,文件存放在anaconda\pkgs\libopencv-3.4.1-h875b8b8_3\Library\etc的haarcascades文件夹中,包含了许多个.

基于python+opencv的人脸检测+

人脸检测分为两种:一种是基于知识的,一种是基于深度学习的.深度不会学习 人脸识别属于目标检测,主要涉及两个方面: ①先对检测的物体进行概率统计,从而知道待检测对象的一些特征,建立其目标的检测模型 ②用得到的模型来匹配输入的图像,如果有匹配则则输出匹配的区域,否则什么也不做. 我们看到的图片和计算机不一样,计算机看到的是一串串数字矩阵,图片由多个像素组成,拿我们熟悉的RGB图像来说,每个像素又有红绿蓝三个通道,假如每个像素的单个通道由uint8类型字符组成,那么三通道的像素便会有24位,这是我们常

基于Opencv的人脸检测及识别

一.实验目的:我这里完成的是,将8张人脸图片(4组,每组两张)存入库中,选取1张图片,程序识别出与其匹配的另一张. 这里介绍分三个步骤完成该工作,①程序读取摄像头.拍照 ②程序从电脑文档中读取图片   ③检测人脸,并用红框框出人脸 ④使用感知哈希算法匹配最相似的图片 二.实验环境: Win 7(x64).visual studio 2010.openCV-2.4.3 使用语言:C++ 三.实验准备:①安装好vs2010,本文不予介绍.   ②配置opencv : 1'进入官网下载http://o

基于OpenCv的人脸检测、识别系统学习制作笔记之三

1.在windows下编写人脸检测.识别系统.目前已完成:可利用摄像头提取图像,并将人脸检测出来,未进行识别. 2.在linux下进行编译在windows环境下已经能运行的代码. 为此进行了linux系统下OpenCv的安装. 在linux中安装OpenCv遇到了很多问题,已经解决,但是花费了不少时间.目前:可以在linux下编译OpenCv项目,但是运行生成的程序时出现问题.初步认定为采用了虚拟机而导致运行内存不足,程序直接崩溃,将继续解决这个问题. 花费较多时间安装OpenCv是有必要的,为

基于OpenCv的人脸检测、识别系统学习制作笔记之一

基于OpenCv从视频到摄像头的人脸检测 在OpenCv中读取视频文件和读取摄像头的的视频流然后在放在一个窗口中显示结果其实是类似的一个实现过程. 先创建一个指向CvCapture结构的指针 CvCapture *capture; 再用两个函数就可以分别获取到视频文件或者摄像头的一些状态信息,然后把这些信息放进去之前指向的结构体 视频文件 capture = cvCreateCameraCapture(0); 打开摄像头 capture = cvCreateFileCapture(argv[1]