十七、斐波那契数列 【递推思想(迭代思想)解决】



递推思想本身并不跟函数有直接关系(虽然常常写在函数中)。

其基本思路为:

为了解决一个“大”问题,根据现实逻辑,如果能够找到同类问题的一个“最小问题”的答案(通常是已知的),并且根据已知算法,又可以因此得到比最小问题“大一级”问题的答案。 而且,依次类推,又可以得到再大一级问题的答案,最终就可以得到“最大那个问题”(即要解决的问题)的答案。

可见,该思想的过程依赖与2个条件:

1,可知同类最小问题的答案;

2,大一级问题的答案可以通过小一级问题的答案经过简单运算规则而得到。

此思想的解体思路是:从小到大

对比:递归思想是:从大到小,在回归到大。

举例:

斐波那契数列,又称为黄金分割数列,

斐波那契数列的前几项为:1,1,2,3,5,8,13,21...(前两项是已知的),这两个数从第三项开始,每一项都等于前两项之和。

例如相关的:有趣的兔子问题,

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来,如果所有兔子都不死,那么一年之后可以繁殖多少对兔子?

分析如下:

第一个月小兔子没有繁殖能力,所以还是一对;

两个月后,生下一对小兔子,总数共有两对;

三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,总数共有三对

…………

<?php

//利用递推思想(迭代思想)解决斐波那契数列

function fbnq($month){

$month1=1;

$month2=1;

$result=0;

for($i=3;$i<=$month;$i++){

$result=$month1+$month2;

$month1=$month2;

$month2=$result;

}

return $result;

}

echo "兔子的总数量".fbnq(8);

?>

时间: 2024-12-23 05:02:24

十七、斐波那契数列 【递推思想(迭代思想)解决】的相关文章

Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 E. Excellent Engineers-单点更新、区间最值-线段树 G. Growling Gears I. Interesting Integers-类似斐波那契数列-递推思维题

先写这几道题,比赛的时候有事就只签了个到. E. Excellent Engineers 传送门: 这个题的意思就是如果一个人的r1,r2,r3中的某一个比已存在的人中的小,就把这个人添加到名单中. 因为是3个变量,所以按其中一个变量进行sort排序,然后,剩下的两个变量,一个当位置pos,一个当值val,通过线段树的单点更新和区间最值操作,就可以把名单确定. 代码: 1 //E-线段树 2 #include<iostream> 3 #include<cstdio> 4 #incl

----斐波那契数列---eval函数----类递归思想 栈 进出 思想

------------ 斐波那契 数列 --------------- [1,1,2,3,5,8,13,21,34,...] 1 列表方法实现 # l=[1,1] # # # while len(l)<=20: # # l.append(l[-1]+l[-2]) # # print(l) # # while len(l)!=4: # l.append(l[-1]+l[-2]) # print(l) # 2 迭代实现 # n=10 # # n1 = 1 # n2 = 1 # n3 = 1 # #

斐波那契数列——摘自搜狗百科

1数列公式 递推公式 斐波那契数列:0.1.1.2.3.5.8.13.21.34.55.89.144... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 通项公式 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 斐波拉契数列则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2

斐波那契数列实例讲解以及C++实现

斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以<斐波纳契数列季刊>为名的一份数学杂志,用于专门刊载这方面的研究成果. 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

矩阵乘法&amp;&amp;矩阵快速幂&amp;&amp;最基本的矩阵模型——斐波那契数列

矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一概念由19世纪英国数学家凯利首先提出. 好,很高深对吧.那我们就更加直接地理解一下矩阵的实质:二维数组 好了这个SB都会,就不解释了 同二维数组一样,矩阵是一个'纵横排列的二维数据表格',它一般是一个n*m的二维数组,其中n*m表示它有n行m列 每一位上的数可以用下标i,j来表示,形如这样一个矩阵:

HDU 5451 广义斐波那契数列

这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = 10*f(n-1)-(5-2√6)f(n-1) = 10*f(n-1) - 10/(5+2√6) f(n-1) = 10*f(n-1) - 10/(5+2√6) * (5+2√6)f(n-2) = 10*f(n-1) - f(n-2) 那么就可以写成矩阵相乘的形式了 (f(n) , f(n-1))

使用递推和递归解决斐波那契数列问题~~~

/** * 使用递推的方式处理斐波那契数列 * @param sum * @param i * @return */ public static int findValue(int n){ if(n==1) { return 1; } if(n==2) { return 2; } int sum=1; int pre=1; for(int i=3;i<=n;i++) { int temp=sum; sum+=pre; pre=temp; } return sum; } /** * 采用递归的方式

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

《剑指Offer》题目——斐波拉契数列

题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.(n<=39) 题目分析:如果使用简单的递归,很容易造成栈溢出.采用递推的方式即可. 代码: public class Fibonacci { public static int fibonacci(int n){ int res[] = new int[2]; res[0]=1; res[1]=1; int temp = 0; if(n==0) return 0; if(n<=2) return res[