JAVA实现N皇后问题(回溯法)

package com.leetCode;
/**
 *
Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
 * @author Zealot
 * @date 2015年7月23日 下午6:14:49
 */
public class NQueensII {
	int[] x;//当前解
	int N;//皇后个数
	 int sum = 0;//当前已找到的可行方案数
	public int totalNQueens(int n) {
		N = n;
		x = new int[N+1];
		backTrace(1);
		return sum;
	}
	/**
	 * col行这个点,x[col]列这个点,与已经存在的几个皇后,是否符合要求,放到这个位置上,
	 * @param col
	 * @return
	 */
	private boolean place(int col){
		for(int i = 1; i < col; i++){
			if(Math.abs(col - i)==Math.abs(x[col]-x[i])||x[col]==x[i]){
				return false;
			}
		}
		return true;
	}
	private void backTrace(int t) {
		if(t>N){
			sum++;
		}else {
			//第t行,遍历所有的节点
			for(int j = 1; j <= N; j++) {
				 x[t] = j ;
				 //如果第j个节点可以放下皇后
				if(place(t)){
					//接着放下一个
					backTrace(t+1);
				}
			}
		}

	}
	public static void main(String[] args) {
		NQueensII n = new NQueensII();
		System.out.println(n.totalNQueens(8));
	}
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2025-01-01 23:01:46

JAVA实现N皇后问题(回溯法)的相关文章

N皇后问题--回溯法 (循环递归)

N皇后问题 问题描述:N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击) 思路 (回溯法,循环递归):0. 初始化棋盘(全部为0)1. 依次将第一列棋子置为12. 放完棋子执行横向,纵向,斜向的update,把不能放棋子的位置置为23. 从第二列棋子开始,递归执行4. 执行到最后一列,退出递归5. 执行第一列的第二个棋子 实现: var N = 4; Array.prototype.count = functi

算法入门经典-第七章 例题7-4-1 拓展 n皇后问题 回溯法

实际上回溯法有暴力破解的意思在里面,解决一个问题,一路走到底,路无法通,返回寻找另   一条路. 回溯法可以解决很多的问题,如:N皇后问题和迷宫问题. 一.概念 回溯算法实际类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现不满足条件的时候,就回溯返回,尝试别的路径. 百度解释:回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯

八皇后问题-回溯法(matlab)

1.问题描述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后,使其不能互相攻击,即任意的两个皇后不能处在同意行,同一列,或同意斜线上. 2.matlab代码 function PlaceQueen(row,stack,N)%回溯法放置皇后 if row>N PrintQueen(N,stack);%打印棋盘 else for col=1:N stack(row)=col; if row==1||Conflict(row,col,N,stack)%检测是

八皇后问题-回溯法解

八皇后问题:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. int g_number = 0;? //多少种摆放方法?void EightQueen(){? ?const int queens = 8;? //棋盘大小?? ?int ColumnIndex[queens];? //列索引?//遍历行? ?for(int i = 0; i < queens; ++ i)?? ? ? ?ColumnIndex[i] = i;

八皇后(回溯法)

题目内容 n*n的矩阵,作为棋盘,放置n个皇后,且它们都无法攻击其他皇后,求出放置方法 皇后的攻击方式,沿行.列.对角线都可以攻击其它皇后 基本思想 使用回溯法(穷举法) 所有的回溯问题都是由三个步骤组成:choose.explore.unchoose 因此对每个问题需要知道: choose what?   对于这个问题,我们选择每个字符串 how to explore?对于这个问题,我们对剩余的字符串做同样的事情. unchoose           做相反的操作选择 回溯法步骤 1.Def

八皇后问题——回溯法(python&amp;&amp;JAVA)

八皇后问题,是一个古老而著名的问题,问题如下: 在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 上边是一个8*8的国际棋盘,可以看到棋盘中的每个格子都标有数字.每个数字都是两位,十位数字表示该格子所在的行,而个位数字表示该格子所在的列. 这样不难发现,处在同一行的两个格子其十位数都相同,处在同一列的两个格子其个位数都相同,处在同一斜线的两个格子有:|两个数字个位数的差|=|两个数字十位数的差|. 主要的三个限制条件明白了

2、八皇后问题——回溯法

/** * */ package unit1; /** * @author * @version 创建时间:2015-10-30 下午02:55:24 类说明 */ public class EightQueensNotRecursive { private static final boolean AVAILABLE = true; private int squares = 16, norm = squares - 1; private int positionInRow[] = new i

八皇后之回溯法解决[转]

问题描述: 要在8*8的国际象棋棋盘中放8个皇后,使任意两个皇后都不能互相吃掉.规则是皇后能吃掉同一行.同一列.同一对角线的棋子.如下图即是两种方案: . 解决方案: 8*8的棋盘要摆放8个皇后,且不能同行同列同对角线,那么每行必定会有一个皇后.我们可以设一个数组a用来存放每一行皇后的位置,元素值表示第几列(如a[1]=5表示第一行的皇后处于第五个格).然后只需要求出数组a的值 问题就解决了,下面介绍三种回溯解法: 1.八个for循环.用枚举的办法,八个for循环分别枚举每一行的8个位置,但是我

noj算法 8皇后打印 回溯法

描述: 输出8皇后问题所有结果. 输入: 没有输入. 输出: 每个结果第一行是No n:的形式,n表示输出的是第几个结果:下面8行,每行8个字符,'A'表示皇后,'.'表示空格.不同的结果中,先输出第一个皇后位置靠前的结果:第一个皇后位置相同,先输出第二个皇后位置靠前的结果:依次类推. 输入样例: 输出样例: 输出的前几行:No 1:A...........A..........A.....A....A...........A..A.........A....No 2:A............