Best Financing
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 148 Accepted Submission(s): 35
Problem Description
小A想通过合理投资银行理財产品达到收益最大化。已知小A在未来一段时间中的收入情况,描写叙述为两个长度为n的整数数组dates和earnings,表示在第dates[i]天小A收入earnings[i]元(0<=i<n)。银行推出的理財产品均为周期和收益确定的,可描写叙述为长度为m的三个整数数组start、finish和interest_rates, 若购买理財产品i(0<=i<m),须要在第start[i]天投入本金,在第finish[i]天可取回本金和收益,在这期间本金和收益都无法取回,收益为本金*interest_rates[i]/100.0。当天取得的收入或理財产品到期取回的本金当天就可以购买理財产品(注意:不考虑复利,即购买理財产品获得的收益不能用于购买兴许的理財产品)。假定闲置的钱没有其它收益,如活期收益等,全部收益仅仅能通过购买这些理財产品获得。求小A能够获得的最大收益。
限制条件:
1<=n<=2500
1<=m<=2500
对于随意i(0<=i<n),1<=dates[i]<=100000,1<=earnings[i]<=100000, dates中无反复元素。
对于随意i(0<=i<m),1<=start[i]<finish[i]<=100000, 1<=interest_rates[i]<=100。
Input
第一行为T (T<=200),表示输入数据组数。
每组数据格式例如以下:
第一行是n m
之后连续n行,每行为两个以空格分隔的整数,依次为date和earning
之后连续m行,每行为三个以空格分隔的整数,依次为start, finish和interest_rate
Output
对第i组数据,i从1開始计,输出
Case #i:
收益数值,保留小数点后两位,四舍五入。
Sample Input
2 1 2 1 10000 1 100 5 50 200 10 2 2 1 10000 5 20000 1 5 6 5 9 7
Sample Output
Case #1: 1000.00 Case #2: 2700.00
Source
Recommend
liuyiding | We have carefully selected several similar problems for you: 4831 4830 4829 4828 4827
思路:
将起点终点离散化,之后用起点做DP
/************************************************************************* > File Name: hdu-4833-Best-Financing.cpp > Author: nealgavin > Mail: [email protected] > Created Time: Mon 26 May 2014 07:28:57 PM CST ************************************************************************/ #include <iostream> #include <cstdio> #include <cstring> #include <map> #include <vector> #include <algorithm> using namespace std; const int mm = 5009; const int nn = 100003; class Income{ public: int date; int earning; }salry[mm]; class Contral{ public: int start; int finish; int interest_rates; }earn[mm]; int T,n,m; int f[nn],day_in[nn],all_in[nn]; int dp[mm]; map<int,int>mp; vector<int>vc[2][mm]; int main() { while(~scanf("%d",&T)) { for(int ca=1;ca<=T;++ca) { scanf("%d %d",&n,&m); memset(day_in,0,sizeof(day_in)); memset(all_in,0,sizeof(all_in)); for(int i=0;i<n;++i) { scanf("%d %d",&salry[i].date,&salry[i].earning); all_in[ salry[i].date ] += salry[i].earning; } for(int i=1;i<nn;++i) all_in[i] += all_in[i-1]; for(int i=0;i<m;++i) scanf("%d %d %d",&earn[i].start,&earn[i].finish,&earn[i].interest_rates); for(int i=0;i<m;++i) for(int i=0;i<m;++i) { f[i] = earn[i].start; f[i+m] = earn[i].finish; } sort(f,f+m+m); int pos = unique(f,f+m+m)-f; mp.clear(); for(int i=0;i<pos;++i) mp[ f[i] ] = i; day_in[ 0 ] = all_in[ f[0] ]; for(int i=1;i<pos;++i) day_in[ i ] = all_in[ f[i] ] - all_in[ f[i-1] ]; for(int i=0;i<2;++i) for(int j=0;j<pos;++j) vc[i][j].clear(); for(int i=0;i<m;++i) { earn[i].start = mp[ earn[i].start ]; earn[i].finish = mp[ earn[i].finish ]; vc[0][ earn[i].start ].push_back(earn[i].finish); vc[1][ earn[i].start ].push_back(earn[i].interest_rates); } memset(dp,0,sizeof(dp)); for(int i=pos-1;i>=0;--i) { dp[i] = dp[i+1]; int sz = vc[0][i].size(); for(int j=0;j<sz;++j) { dp[i] = max(dp[i],dp[ vc[0][i][j] ]+vc[1][i][j]); // cerr<<"in"<<i<<" "<<dp[i]<<" "<<vc[0][i][j]<<" "<<vc[1][i][j]<<endl; } } long long ans = 0; for(int i=0;i<pos;++i) ans += (long long)dp[i]*day_in[i]; printf("Case #%d:\n",ca); printf("%.2f\n",(double)ans/100); } } return 0; }