Hadoop-Yarn-框架原理及运作机制

一、YARN基本架构

YARN是Hadoop 2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。

二、YARN基本组成结构

YARN 总体上仍然是Master/Slave结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为 Slave,ResourceManager负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以 跟踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManger启动可以占用一 定资源的任务。由于不同的ApplicationMaster被分布到不同的节点上,因此它们之间不会相互影响。在本小节中,我们将对YARN的基本组成 结构进行绍。

YARN 运行的基本架构如下图:

图描述了YARN的基本组成结构,YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR AppMstr和MPI AppMstr)和Container等几个组件构成。

时间: 2024-10-05 22:29:15

Hadoop-Yarn-框架原理及运作机制的相关文章

hadoop yarn框架原理

Hadoop CDH5.0.1 分布式系统,包括NameNode ,ResourceManger HA,忽略了Web Application Proxy 和Job HistoryServer. 一概述 (一)HDFS 1)基础架构 (1)NameNode(Master) 命名空间管理:命名空间支持对HDFS中的目录.文件和块做类似文件系统的创建.修改.删除.列表文件和目录等基本操作.块存储管理 (2)DataNode(Slaver) namenode和client的指令进行存储或者检索block

决胜大数据时代:Hadoop&Yarn&Spark企业级最佳实践(8天完整版脱产式培训版本)

Hadoop.Yarn.Spark是企业构建生产环境下大数据中心的关键技术,也是大数据处理的核心技术,是每个云计算大数据工程师必修课. 课程简介 大数据时代的精髓技术在于Hadoop.Yarn.Spark,是大数据时代公司和个人必须掌握和使用的核心内容. Hadoop.Yarn.Spark是Yahoo!.阿里淘宝等公司公认的大数据时代的三大核心技术,是大数据处理的灵魂,是云计算大数据时代的技术命脉之所在,以Hadoop.Yarn.Spark为基石构建起来云计算大数据中心广泛运行于Yahoo!.阿

Hadoop YARN资源隔离技术

YARN对内存资源和CPU资源采用了不同的资源隔离方案.对于内存资源,它是一种限制性资源,它的量的大小直接决定应用程序的死活,因为应用程序到达内存限制,会发生OOM,就会被杀死.CPU资源一般用Cgroups进行资源控制,Cgroups控制资源测试可以参见这篇博文Cgroups控制cpu,内存,io示例,内存资源隔离除Cgroups之外提供了另外一个更灵活的方案,就是线程监控方案. 默认情况下YARN采用线程监控的方案控制内存使用,采用这种机制的原因有两点: 1.Java创建子进程采用了"for

# Apache Hadoop Yarn: Yet Another Resource Negotiator论文解读

纯属云平台管理学习菜鸟的笔记,参照许多大牛的博客,如有侵权,请联系,立刻删除. Abstract 1) tight coupling of a specific programming model with the re- source management infrastructure, forcing developers to abuse the MapReduce programming model, and 2) centralized handling of jobs' contro

Hadoop - YARN 概述

一 概述 Apache Hadoop YARN (Yet Another Resource Negotiator,还有一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统.可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率.资源统一管理和数据共享等方面带来了巨大优点. YARN最初是为了修复MapReduce实现里的明显不足,并对可伸缩性(支持一万个节点和二十万个内核的集群).可靠性和集群利用率进行了提升.YARN实现这些需求的方式是,把Job Tracker

Yarn 内存分配管理机制及相关参数配置

理解Yarn的内存管理与分配机制,对于我们搭建.部署集群,开发维护应用都是尤为重要的,对于这方面我做了一些调研供大家参考. 一.相关配置情况 关于Yarn内存分配与管理,主要涉及到了ResourceManage.ApplicationMatser.NodeManager这几个概念,相关的优化也要紧紧围绕着这几方面来开展.这里还有一个Container的概念,现在可以先把它理解为运行map/reduce task的容器,后面有详细介绍. 1.1  RM的内存资源配置, 配置的是资源调度相关 RM1

Hadoop -YARN 应用程序设计概述

一概述 应用程序是用户编写的处理数据的统称,它从YARN中申请资源完成自己的计算任务.YARN自身对应用程序类型没有任何限制,它可以是处理短类型任务的MapReduce作业,也可以是部署长时间运行的服务的应用程序.应用程序可以向YARN申请资源完成各类计算任务. 在YARN上开发一个应用程序,通常而言,需要开发两个组件,分别是客户端和ApplicationMaster,其中客户端主要作用是将应用程序提交到YARN上,并与YARN 和Application Master进行交互,查询应用程序的状态

hadoop yarn running beyond physical memory used

老是报物理内存越界,kill container,然后把yarn.scheduler.minimum-allocation-mb设成2048就好了 跟这个yarn.nodemanager.pmem-check-enabled参数应该也有关系 在这篇文章中得到启发:http://bise.aliapp.com/index.php/433.html 调度和隔离 Hadoop YARN同时支持内存和CPU两种资源的调度(默认只支持内存,如果想进一步调度CPU,需要自己进行一些配置),本文将介绍YARN

3 weekend110的job提交的逻辑及YARN框架的技术机制 + MR程序的几种提交运行模式

途径1: 途径2: 途径3: 成功! 由此,可以好好比较下,途径1和途径2 和途径3 的区别. 现在,来玩玩weekend110的joba提交的逻辑之源码跟踪 原来如此,weekend110的job提交的逻辑源码,停在这了 hello world hello tom helllo jim jim is a bad boy hello jack hello baby baby is my nvshen hello world hello tom helllo jim jim is a bad bo

Hadoop YARN架构设计要点

YARN是开源项目Hadoop的一个资源管理系统,最初设计是为了解决Hadoop中MapReduce计算框架中的资源管理问题,但是现在它已经是一个更加通用的资源管理系统,可以把MapReduce计算框架作为一个应用程序运行在YARN系统之上,通过YARN来管理资源.如果你的应用程序也需要借助YARN的资源管理功能,你也可以实现YARN提供的编程API,将你的应用程序运行于YARN之上,将资源的分配与回收统一交给YARN去管理,可以大大简化资源管理功能的开发.当前,也有很多应用程序已经可以构建于Y