腾讯课堂目标2017初中数学联赛集训队作业题解答-8

课程链接:目标2017初中数学联赛集训队-1(赵胤授课)

1. 若 $x$, $y$ 是非零实数, 使得 $|x| + y = 3$ 和 $|x|y + x^3 = 0$, 则 $x + y = ?$

解答:

考虑去绝对值符号. $$|x|y + x^3 = 0\Rightarrow y = -|x|x $$ 若 $x \ge 0$, 则 $y = -x^2$, 代入得 $$x - x^2 = 3 \Rightarrow x^2 - x + 3 = 0 \Rightarrow \Delta = -11 < 0.$$ 若 $x < 0$, 则 $y = x^2$, 代入得 $$-x + x^2 = 3 \Rightarrow x^2 - x - 3 = 0 \Rightarrow \begin{cases}x = {1 - \sqrt{13} \over 2}\\ y = {7 - \sqrt{13} \over 2} \end{cases} \Rightarrow x + y = 4 - \sqrt{13}.$$ 综上, $x + y = 4 - \sqrt{13}$.

2. 已知 $a_1$, $a_2$, $a_3$, $a_4$, $a_5$ 是满足条件 $a_1 + a_2 + a_3 + a_4 + a_5 = 9$ 的五个不同的整数, 若 $b$ 是关于 $x$ 的方程 $(x - a_1)(x - a_2)(x - a_3)(x - a_4)(x - a_5) = 2009$ 的整数根, 则 $b=?$

解答:

由题意可得 $$(b - a_1)(b - a_2)(b - a_3)(b - a_4)(b - a_5) = 2009 = 7^2 \times 41$$ $$\Rightarrow (b - a_1)(b - a_2)(b - a_3)(b - a_4)(b - a_5) = -1 \times 1 \times 7 \times (-7) \times 41$$ $$\Rightarrow (b - a_1) + (b - a_2) + (b - a_3) + (b - a_4) + (b - a_5) = 41\Rightarrow 5b = 41 + 9$$ 因此 $b = 10$.

3. 已知实数 $a\ne b$, 且满足 $(a + 1)^2 = 3 - 3(a+1)$, $3(b + 1) = 3 - (b + 1)^2$. 则 $\displaystyle b\sqrt{b\over a} + a\sqrt{a \over b} = ?$

解答:

由题意可得 $a$, $b$ 是一元二次方程 $(x + 1)^2 + 3(x + 1) - 3 = 0 \Rightarrow x^2 +5x +1 = 0$ 的两根. 因此有 $$\begin{cases}a + b = -5\\ ab = 1 \end{cases}\Rightarrow a < 0,\ b < 0.$$ $$\Rightarrow b\sqrt{b\over a} + a\sqrt{a \over b} = {-(a^2 + b^2) \over \sqrt{ab}} = {-23 \over 1} = -23.$$

4. 解方程: $$\sqrt{2x^2 - 5x + 2} + \sqrt{x^2 - 7x + 6} = \sqrt{2x^2 - 3x + 1} + \sqrt{x^2 - 9x + 7}.$$ 解答:

换元法求解之.

令 $\sqrt{2x^2 - 5x + 2} = a$, $\sqrt{x^2 - 7x + 6} = b$, $\sqrt{2x^2 - 3x + 1} = c$, $\sqrt{x^2 - 9x + 7} = d$. $$\begin{cases}a + b = c + d\\ a^2 + b^2 = c^2 + d^2 \end{cases} \Rightarrow \begin{cases}a - c = d - b\\ a^2 - c^2 = d^2 - b^2\end{cases}$$ 若 $a - c = d - b = 0$, 则 $x = 0.5$.

若 $a - c = d - b \ne 0$, 则 $$a + c = d + b \Rightarrow a = d,\ b = c$$ $$\Rightarrow 2x^2 -5x + 2 = x^2 - 9x + 7 \Rightarrow x_1= -5, x_2 = 1.$$ 经检验, $x _ 1 = 0.5$, $x_2 = -5$ 是原方程的解.

5. 解方程: $${x - 7 \over \sqrt{x - 3} + 2} + {x - 5 \over \sqrt{x - 4} + 1} = \sqrt{10}.$$ 解答: $$\sqrt{10} = {x - 7 \over \sqrt{x - 3} + 2} + {x - 5 \over \sqrt{x - 4} + 1}$$ $$= {(x - 7)(\sqrt{x - 3} - 2)\over(\sqrt{x-3} + 2)(\sqrt{x - 3} - 2)} + {(x - 5)(\sqrt{x - 4} - 1) \over (\sqrt{x - 4} + 1)(\sqrt{x - 4} - 1)}$$ $$= \sqrt{x - 3} - 2 + \sqrt{x - 4} - 1$$ $$\Rightarrow \sqrt{x - 3} + \sqrt{x - 4} = 3 + \sqrt{10}$$ $$\Rightarrow \sqrt{x - 4} - \sqrt{10} = 3 - \sqrt{x - 3}$$ $$\Rightarrow x + 6 - 2\sqrt{10(x - 4)} = x + 6 - 6\sqrt{x - 3}$$ $$\Rightarrow 10(x - 4) = 9(x - 3) \Rightarrow x = 13.$$ 经检验, $x = 13$ 是原方程的解.

时间: 2024-08-05 07:07:14

腾讯课堂目标2017初中数学联赛集训队作业题解答-8的相关文章

腾讯课堂目标2017初中数学联赛集训队作业题解答-11

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 证明: 当素数 $p\ge7$ 时, $p^4 - 1$ 可被 $240$ 整除. 解答: $$p^4 - 1 = (p^2 + 1)(p + 1)(p - 1)$$ $$\Rightarrow \begin{cases}24\ \big{|}\ (p+1)(p-1)\\10\ \big{|}\ p^4 - 1\end{cases} \Rightarrow 240\ \big{|}\ p^4 - 1.$$ 注: $10\ \big{

腾讯课堂目标2017初中数学联赛集训队作业题解答-10

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 已知二次函数 $y = 3ax^2 + 2bx - (a + b)$, 当 $x = 0$ 和 $x = 1$ 时, $y$ 的值均为正数, 则当 $0 < x < 1$ 时, 抛物线与 $x$ 轴的交点个数是多少? 解答: 令 $f(x) = 3ax^2 + 2bx - (a + b)$, $$\Rightarrow \begin{cases}f(0) = -(a + b) > 0\\ f(1) = 3a + 2b - (

腾讯课堂目标2017初中数学联赛集训队作业题解答-9

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 已知 $a$, $b$, $c$ 为整数, 且 $a+b = 2006$, $c - a = 2005$. 若 $a < b$, 则 $a + b + c$ 之最大值是多少? 解答: $\because a, b\in\mathbf{Z}$, $a + b = 2006$, $\therefore a \le 1002$, 因此由 $$\begin{cases}a + b = 2006\\ c - a = 2005\end{case

腾讯课堂目标2017初中数学联赛集训队作业题解答-5

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 凸四边形 $ABCD$ 中, $S_{\triangle{ABD}} + S_{\triangle{ABC}} = S_{\triangle{BCD}}$, $M$, $N$ 分别在 $AC$, $CD$ 上, $AM : AC = CN : CD$, 且 $B$, $M$, $N$ 共线, 求证: $M$, $N$ 分别为 $AC$, $CD$ 之中点. 解答: 考虑列出面积方程求解. 令$${AM \over AC} = {CN

数学奥林匹克问题解答:目标2017初中数学联赛集训队作业题解答-2

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1.证明: 不等边三角形之三条外角平分线与对边延长线之交点必共线. 证明: 考虑Menelaus定理, 暨证明$${AF \over FB}\cdot{BD \over DC}\cdot{CE \over EA} = 1.$$由外角平分线定理可知, ${AF \over FB} = {AC \over BC}$, ${BD \over DC} = {AB \over AC}$, ${CE \over EA} = {BC \over AB}

腾讯课堂目标2017高中数学联赛基础班-2作业题解答-10

课程链接:目标2017高中数学联赛基础班-2(赵胤授课) 1. 设 $a_1, a_2, \cdots, a_n\in\mathbf{R}$, 证明: $$\sqrt[3]{a_1^3 + a_2^3 + \cdots + a_n^3} \le \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}.$$ 解答: $$\left(\sum a_i^3\right)^2 \le \sum a_i^2 \cdot \sum a_i^4 \le \sum a_i^2 \cdot \

腾讯课堂目标2017高中数学联赛基础班-2作业题解答-11

课程链接:目标2017高中数学联赛基础班-2(赵胤授课) 1. $x, y, z\in\mathbf{R^+}$, 证明: $$\frac{z^2 - x^2}{x + y} + \frac{x^2 - y^2}{y + z} + \frac{y^2 - z^2}{z + x} \ge 0.$$ 解答: $$\frac{z^2 - x^2}{x + y} + \frac{x^2 - y^2}{y + z} + \frac{y^2 - z^2}{z + x} \ge 0$$ $$\Leftrigh

腾讯课堂目标2017高中数学联赛基础班-2作业题解答-9

课程链接:目标2017高中数学联赛基础班-2(赵胤授课) 1. 已知 $a_1, a_2, \cdots, a_n\in\mathbf{R^+}$, 满足 $a_1a_2\cdots a_n = 1$. 求证: $$(2 + a_1)(2 + a_2)\cdots(2 + a_n) \ge 3^n.$$ 解答: $$2 + a_i = 1+1+a_i \ge 3\sqrt[3]{a_i} \Rightarrow \sum_{i = 1}^{n} (2 + a_i) \ge 3^n\sqrt[3]

腾讯课堂目标2017高中数学联赛基础班-2作业题解答-7

课程链接:目标2017高中数学联赛基础班-2(赵胤授课) 1. 解函数方程: $$f(x) + f\left({1\over x}\right)\lg x = b^2,$$ 其中 $x\in\mathbf{R^+}$, $b > 0$, $b\ne1$. 解答: $$\begin{cases}f(x) + f\left({1\over x}\right)\lg x = b^2\\ f({1\over x}) + f(x)\lg{1\over x} = b^2\end{cases}\Rightar