kernel编译

Linux内核编译与安装

Linux内核介绍

Linux内核是一个用C语言写成的,符合POSIX标准的类Unix操作系统。内核是操作系统中最基本的一部分,提供了众多应用程序访问计算机硬件的机制。Linux内核的一大特点就是采用了整体式结构,有很多过程组成,每个过程都可以独立编译,其模块机制又湿得内核保持独立而又易于扩充。Linux发行版实在Linux内核的基础之上,与外带的应用软件和工具打包配置之后发行的版本。最初的Linux内核在1991年由当时还在芬兰赫尔辛基大学计算机系读书的Linus Torvalds开发,之后Linus很快聚集了大量来自其他自由软件项目的开发者和用户为Linux内核贡献代码。当前估计有上千开发者在为Linux内核贡献代码。
自2.6.0版本发布后,Linux内核以A.B.C.D的方式命名。A和B的变化可以说无关紧要,C是内核的真实版本,每一个版本的变化都会带来新的特性。例如内部API的变化等等,改动的数量常常上万。D是安全补丁和bug修复。如果你是Linux的初学者或用户,只需了解stable即可,它代表稳定版的内核更新。mainline指当前的官方内核,由Linus Torvalds进行更新维护,由开发者们贡献的代码主要是合并到mainline当中。linux-next和snapshot都是代码提交周期结束之前生成的快照,用于给Linux代码贡献者们做测试使用。目前stable版本的更新周期为六到十周,下一个稳定版本的rc基本上每周都会更新。新版本的内核分两种,一种是Full  Source版本,完整的内核版本。比较大,一般是tar.gz或者.bz2文件。另一种是patch文件,即补丁文件。patch文件一般只有及时K到几百K,但是对于特定的版本来说,你要找到自己对应的版本才能使用。

编译安装内核

  1. 下载并解压内核
    内核下载官网:https://www.kernel.org/ 
    解压内核:tar xf linux-2.6.XX.tar.xz
  2. 定制内核:make menuconfig
    参见makefile menuconfig过程讲解
  3. 编译内核和模块:make
    生成内核模块和vmlinuz,initrd.img,Symtem.map文件
  4. 安装内核和模块:sudo make modules_install install
    复制模块文件到/lib/modules目录下、复制config,vmlinuz,initrd.img,Symtem.map文件到/boot目录、更新grub

其他命令:
make mrprobe:命令的作用是在每次配置并重新编译内核前需要先执行“make mrproper”命令清理源代码树,包括过去曾经配置的内核配置文件“.config”都将被清除。即进行新的编译工作时将原来老的配置文件给删除到,以免影响新的内核编译。
make dep:生成内核功能间的依赖关系,为编译内核做好准备。

几个重要的Linux内核文件介绍

  1. config

    使用make menuconfig 生成的内核配置文件,决定将内核的各个功能系统编译进内核还是编译为模块还是不编译。

  2. vmlinuz 和 vmlinux

    vmlinuz是可引导的、压缩的内核,“vm”代表“Virtual Memory”。Linux 支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制,Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行的Linux内核,vmlinuz的建立有两种方式:一是编译内核时通过“make zImage”创建,zImage适用于小内核的情况,它的存在是为了向后的兼容性;二是内核编译时通过命令make bzImage创建,bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起误解,bz表示“big zImage”,bzImage中的b是“big”意思。 zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码,所以你不能用gunzip 或 gzip –dc解包vmlinuz。 内核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage 或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。 vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
  3. initrd.img

    initrd是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。比如initrd- 2.4.7-10.img主要是用于加载ext3等文件系统及scsi设备的驱动。如果你使用的是scsi硬盘,而内核vmlinuz中并没有这个 scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/modules下。为了解决这个问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题,initrd-2.4.7-10.img是用gzip压缩的文件。initrd映象文件是使用mkinitrd创建的,mkinitrd实用程序能够创建initrd映象文件,这个命令是RedHat专有的,其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体情况请看帮助:man mkinitrd
  4. System.map是一个特定内核的内核符号表,由“nm vmlinux”产生并且不相关的符号被滤出。
    下面几行来自/usr/src/linux-2.4/Makefile:
          nm vmlinux | grep -v ‘(compiled)|(.o$$)|( [aUw] )|(..ng$$)|(LASH[RL]DI)‘ | sort > System.map 
    在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号, Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名,比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。 对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,而内核运行时使用地址。 然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号,这由符号表来完成,符号表是所有符号连同它们的地址的列表。
    Linux 符号表使用到2个文件: /proc/ksyms  、System.map 。/proc/ksyms是一个“proc  file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看 出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map 具有的是错误的符号信息,每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。 
    虽然内核本身并不真正使用System.map,但其它程序比如klogd, lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。 另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。 Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的地方。执行:man klogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map: /boot/System.map 、/System.map 、/usr/src/linux/System.map 
    System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。

makefile menuconfig过程讲解

当我们在执行make menuconfig这个命令时,系统到底帮我们做了哪些工作呢?这里面一共涉及到了一下几个文件我们来一一探讨

  1. Linux内核根目录下的scripts文件夹
  2. arch/$ARCH/Kconfig文件、各层目录下的Kconfig文件
  3. Linux内核根目录下的makefile文件、各层目录下的makefile文件
  4. Linux内核根目录下的的.config文件、arch/$ARCH/configs/下的文件
  5. Linux内核根目录下的 include/generated/autoconf.h文件

1)scripts文件夹存放的是跟make menuconfig配置界面的图形绘制相关的文件,我们作为使用者无需关心这个文件夹的内容
2)当我们执行make menuconfig命令出现上述蓝色配置界面以前,系统帮我们做了以下工作:
首先系统会读取arch/$ARCH/目录下的Kconfig文件生成整个配置界面选项(Kconfig是整个linux配置机制的核心),那么ARCH环境变量的值等于多少呢?它是由linux内核根目录下的makefile文件决定的,在makefile下有此环境变量的定义:
      SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
                  -e s/arm.*/arm/ -e s/sa110/arm/ \
                  -e s/s390x/s390/ -e s/parisc64/parisc/ \
                  -e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
                  -e s/sh[234].*/sh/ )
      ..........
      export KBUILD_BUILDHOST := $(SUBARCH)
      ARCH        ?= $(SUBARCH)
      CROSS_COMPILE   ?=
或者通过 make ARCH=arm menuconfig命令来生成配置界面
比如教务处进行考试,考试科数可能有外语、语文、数学等科,这里我们选择了arm科可进行考试,系统就会读取arm/arm/kconfig文件生成配置选项(选择了arm科的卷子),系统还提供了x86科、milps科等10几门功课的考试题

3)假设教务处比较“仁慈”,为了怕某些同学做错试题,还给我们准备了一份参考答案(默认配置选项),存放在arch/$ARCH/configs/目录下,对于arm科来说就是arch/arm/configs文件夹:

此文件夹中有许多选项,系统会读取哪个呢?内核默认会读取linux内核根目录下.config文件作为内核的默认选项(试题的参考答案),我们一般会根据开发板的类型从中选取一个与我们开发板最接近的系列到Linux内核根目录下(选择一个最接近的参考答案)

4).config
假设教务处留了一个心眼,他提供的参考答案并不完全正确(.config文件与我们的板子并不是完全匹配),这时我们可以选择直接修改.config文件然后执行make menuconfig命令读取新的选项。但是一般我们不采取这个方案,我们选择在配置界面中通过空格、esc、回车选择某些选项选中或者不选中,最后保存退出的时候,Linux内核会把新的选项(正确的参考答案)更新到.config中,此时我们可以把.config重命名为其它文件保存起来(当你执行make distclean时系统会把.config文件删除),以后我们再配置内核时就不需要再去arch/arm/configs下考取相应的文件了,省去了重新配置的麻烦,直接将保存的.config文件复制为.config即可.
5)经过以上两步,我们可以正确的读取、配置我们需要的界面了,那么他们如何跟makefile文件建立编译关系呢?当你保存make menuconfig选项时,系统会除了会自动更新.config外,还会将所有的选项以宏的形式保存在Linux内核根目录下的 include/generated/autoconf.h文件下

内核中的源代码就都会包含以上.h文件,跟宏的定义情况进行条件编译。

当我们需要对一个文件整体选择如是否编译时,还需要修改对应的makefile文件,例如:

我们选择是否要编译s3c2410_ts.c这个文件时,makefile会根据CONFIG_TOUCHSCREEN_S3C2410来决定是编译此文件,此宏是在Kconfig文件中定义,当我们配置完成后,会出现在.config及autconf中,至此,我们就完成了整个linux内核的编译过程。
最后我们会发现,整个linux内核配置过程中,留给用户的接口其实只有各层Kconfig、makefile文件以及对应的源文件。
比如我们如果想要给内核增加一个功能,并且通过make menuconfig控制其声称过程
   首先需要做的工作是:修改对应目录下的Kconfig文件,按照Kconfig语法增加对应的选项;
   其次执行make menuconfig选择编译进内核或者不编译进内核,或者编译为模块,.config文件和autoconf.h文件会自动生成;
   最后修改对应目录下的makefile文件完成编译选项的添加;
   最后的最后执行make命令进行编译。

Kconfig和Makefile

Linux内核源码树的每个目录下都有两个文档Kconfig和Makefile。分布到各目录的Kconfig构成了一个分布式的内核配置数据库,每个Kconfig分别描述了所属目录源文档相关的内核配置菜单。在执行内核配置make menuconfig时,从Kconfig中读出菜单,用户选择后保存到.config的内核配置文档中。在内核编译时,主Makefile调用这 个.config,就知道了用户的选择。这个内容说明了,Kconfig就是对应着内核的每级配置菜单。
假如要想添加新的驱动到内核的源码中,要修改Kconfig,这样就能够选择这个驱动,假如想使这个驱动被编译,则要修改Makefile。添加新 的驱动时需要修改的文档有两种(如果添加的只是文件,则只需修改当前层Kconfig和Makefile文件;如果添加的是目录,则需修改当前层和目录下 的共一对Kconfig和Makefile)Kconfig和Makefile。要想知道怎么修改这两种文档,就要知道两种文档的语法结构,Kconfig的语法参见参考文献《【linux-2.6.31】kbuild》。
Makefile 文件包含 5 部分:

Makefile                         顶层的 Makefile
    .config                            内核配置文件
    arch/$(ARCH)/Makefile    体系结构 Makefile
    scripts/Makefile.*            适用于所有 kbuild Makefile 的通用规则等
    kbuild Makefiles               大约有 500 个这样的文件
顶层 Makefile 读取内核配置操作产生的.config 文件,顶层 Makefile 构建两个主要的目标:vmlinux(内核映像)和 modules(所有模块文件)。它通过递归访问内核源码树下的子目录来构建这些目标。访问哪些子目录取决于内核配置。顶层 Makefile 包含一个体系结构 Makefile,由 arch/$(ARCH)/Makefile 指定。体系结构 Makefile 文件为顶层 Makefile 提供了特定体系结构的信息。每个子目录各有一个 kbuild文件和Makefile 文件来执行从上层传递下来的命令。kbuild和Makefile文件利用.config 文件中的信息来构造由 kbuild 构建内建或者模块对象使用的各种文件列表。scripts/Makefile.*包含所有的定义/规则,等等。这些信息用于使用 kbuild和 Makefile 文件来构建内核。Makefile的语法参见参考文献《【linux-2.6.31】kbuild》。

转载:http://blog.chinaunix.net/uid-26497520-id-3593098.html

时间: 2024-10-17 08:59:18

kernel编译的相关文章

Kernel 编译配置机制

编译kernel前需要一个配置相关的编译选项,最终的配置文件就是kernel根目录路下的 .config 文件 一:.config 这个文件里面保存的是kernel的配置选项,格式如下: CONFIG_XX_XX=y/n/m/0xFFFFFF/32/"XXXXXXX" 这个文件由/scripts/kconfig/mconf.c负责解析,然后解析该文件并将解析结果以宏定义的形式写入到/include/generated/autoconf.h中./include/generated/aut

Kernel编译安装

写在前面: 博客书写牢记5W1H法则:What,Why,When,Where,Who,How. 本篇主要内容: ● kernel编译安装 kernel编译安装 回顾: 源码包编译安装步骤: (1)编译环境:开发软件包组.头文件.库文件 (2)./configure (3)make (4)make install kernel编译安装: (1)开发环境 包组: Development Tools Server Platform Development 其他: make menuconfig依赖包:

使用kernel编译+busybox定制Linux系统--实现ssh远程登录+web服务的迷你主机

在运维工作中很多时候我们需要裁剪Linux系统,减少系统性能的消耗,提升系统服务的性能,以往通过光盘安装的Linux都是比较臃肿的,但出现这样的需求后,我可以对Linux进行重新编译再busybox工具移植即可实现,接下来我们一步一步实现kernel编译+busybox定制Linux系统--实现ssh远程登录+web服务: 实现过程如下: 一.规划子主机的磁盘存储规划 1.添加一个大小为10G的硬盘 2.查询系统硬件信息参数: # lspci  00:00.0 Host bridge: Inte

Linux kernel编译指南

最近帮一个项目编译内核,特别学习了一下,记下了过程.如果问题,可以及时联系我 编译命令 1.清理工作目标 make clean: 删除编译中间文件,但是保留配置 make mrproper:删除包括配置文件的所有构建文件 make distclean:执行mrproper所做的一切,并删除备份文件 2.配置内核 make menuconfig:文本图形方式配置内核 make oldconfig:基于当前的.config文件提示更新内核 make defconfig:生成默认的内核配置 make

Andorid Kernel 编译测试

1.所需要的环境 Ubuntu 64位 sudo apt-get install bison build-essential curl flex git gnupg gperf libesd0-dev libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop openjdk-6-jdk openjdk-6-jre pngcrush schedtool squashfs-tools xsltproc zip z

yocto bitbake 编译u-boot kernel

1.u-boot <进入 …-yocto> bitbake -c cleansstate u-boot   (两个s) bitbake -c patch u-boot    (如此才可以从本地编译,不从网上fetch代码) <进入…-release> bitbake -e u-boot |grep ^S=     (获得u-boot代码路径,进入后可修改) <修改完成,进入release> source SOURCE_THIS bitbake -c compile -f

2. ubuntu下载编译linux kernel

一. 引言 诚如老罗所言,android源代码里面并没有带linux kernel代码.它使用的是预先编译好的kernel,大家可以使用adb shell cat proc/version就可以查看到,如下: [email protected]:~/working_directory$ adb shell cat proc/version Linux version 2.6.29-00261-g0097074-dirty ([email protected]) (gcc version 4.4.

嵌入式 Linux开发Kernel移植(二)——kernel内核配置和编译

嵌入式 Linux开发Kernel移植(二)--kernel内核配置和编译 本文选择linux 2.6.35.7版本kernel进行实践. 一.linux kernel源码目录分析 Kbuild,Kernel Build,管理内核编译的文件 Makefile,kernel工程的Makefile. arch,体系架构,arch目录下的子目录存放的是不同种类的架构 block,块设备,一般是存储设备,存放的块设备管理的相关代码 crypto,加密相关,存放加密算法实现代码 Documentation

Linux Kernel Makefile简析 之 make zImage

本文将简要分析Linux Kernel编译zImage的过程.读者需具备GNU Make.Bash Shell.Python脚 本.编译器.链接器等方面的基础知识.虽然重点是分析kernel的构建过程,但是也会顺带的分析一些 其他的小的知识点.我们坐车去远行,欣赏沿途的风景,并不会妨碍我们最终抵达我们的目的地,不是 吗? 先描述一下具体开发环境: . host os: ubuntu 14.04 server LTS . cross toolchain: crosstool-ng生成的交叉编译器