impala大数据量查询/tmp/impala-scratch创建异常

使用impala做大数据量查询distinct的时候报如下错误

WARNINGS: Create file /tmp/impala-scratch/24414dab2c19caca:e54b206c5ab149d_24414dab2c19caca:e54b206c5ab149f_91001337-9d70-4c93-84ce-e7916c1ae804 failed with errno=2 description=Error(2): No such file or directory
Backend 4:Create file /tmp/impala-scratch/24414dab2c19caca:e54b206c5ab149d_24414dab2c19caca:e54b206c5ab149f_91001337-9d70-4c93-84ce-e7916c1ae804 failed with errno=2 description=Error(2): No such file or directory

查阅文档知道impala在大数据量处理时会用到磁盘保存数据

  • By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored in the directory /tmp/impala-scratch. These files are removed when the operation finishes. (Multiple concurrent queries can perform operations that use the "spill to disk" technique, without any name conflicts for these temporary files.) You can specify a different location by starting the impalad daemon with the --scratch_dirs="path_to_directory" configuration option or the equivalent configuration option in the Cloudera Manager user interface. You can specify a single directory, or a comma-separated list of directories. The scratch directories must be on the local filesystem, not in HDFS. You might specify different directory paths for different hosts, depending on the capacity and speed of the available storage devices. Impala will not start if it cannot create or read and write files in the "scratch" directory. If there is less than 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a warning message to its log.

直接到各个impalad节点上创建/tmp/impala-scratch目录,并赋予读写权限

 mkdir /tmp/impala-scratch
 chmod 777 /tmp/impala-scratch
时间: 2024-10-11 20:00:11

impala大数据量查询/tmp/impala-scratch创建异常的相关文章

.Net中EF针对大数据量查询超时的一种优化

旧代码: --receiptIds   id集合,每次查1000左右 var mappingList = new List<FinanceSettlementMapping>(); mappingList.AddRange(SettlementMappingRepository.Entities.Include(o => o.ReceiptsTo).Include(d => d.FinanceSettlement).Where(d => receiptIds.Contains

提高MYSQL大数据量查询的速度

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用

sql大数据量查询的优化技巧

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from xuehi.com where num is null 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from xuehi.com where num=0 3.应尽量避免在 where 子句中使用

大数据量表的优化查询

1:索引,我们最先想到的就是创建索引,创建索引可以成倍的提升查询的效率,节省时间.但是如果数据量太过于巨大的时候,这个时候单纯的创建索引是无济于事的,我们知道假如特别是在大数据量中统计查询,就拿1000W数据来说吧,如果使用count函数的话,最少要50-100秒以上,当然如果你的服务器配置够高,处理够快,或许会少很多但是一样会超过10秒. 单纯的建立索引是无济于事的.我们可以在创建索引的时候给索引加个属性,compress,这个属性可以将所创建的索引进行一个良好的归类,这样的话,查询速度会提升

导出查询数据(大数据量)

1.右击数据库,"任务"--"导出数据" 2.向导页点击"下一步",然后录入登陆信息,再点击"下一步" 3.选择导出类型及路径,然后点击"下一步"(如:Excel文档) 4.选择数据源,直接从表或试图中导出,或者通过sql语句查询导出,然后"下一步".(此处sql查询为例) 5.录入查询语句,然后"下一步"(可分析sql语句是否有效) 6.之后的步骤就是一路"

MySQL大数据量分页查询方法及其优化

方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余抛弃. 方法2: 建立主键或唯一索引, 利用索引(假设每页10条) 语句样式: MySQL中,可用如下方法: SELECT * FRO

sql优化之大数据量分页查询(mysql)

当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时就需要使用分页查询.对于数据库分页查询,也有很多种方法和优化的点. 谈优化前的准备工作 为了对下面列举的一些优化进行测试,需要使用已有的一张表作为实际例子. 表名:order_history. 描述:某个业务的订单历史表. 主要字段:unsigned int id,tinyint(4) int type. 字段情况:该表一共37个字段,不包含text等大型数据,最大为varchar(500

MySQL随机获取数据的方法,支持大数据量

最近做项目,需要做一个从mysql数据库中随机取几条数据出来. 总所周知,order by rand 会死人的..因为本人对大数据量方面的只是了解的很少,无解,去找百度老师..搜索结果千篇一律.特发到这里来,供大家学习. 在mysql中带了随机取数据的函数,在mysql中我们会有rand()函数,很多朋友都会直接使用,如果几百条数据肯定没事,如果几万或百万时你会发现,直接使用是错误的.下面我来介绍随机取数据一些优化方法. SELECT * FROM table_name ORDER BY ran

大数据量高并发的数据库优化

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须