集训第四周(高效算法设计)G题 (贪心)

G - 贪心

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Submit Status

Description

Simon and Garfunkel Corporation (SG Corp.) is a large steel-making company with thousand of customers. Keeping the customer satisfied is one of the major objective of Paul and Art, the managers.

Customers issue orders that are characterized by two integer values q<tex2html_verbatim_mark> , the amount of steel required (in tons) and d<tex2html_verbatim_mark> , the due date (a calender date converted in seconds). The due date has to be met if SG Corp. accepts the order. Stated another way, when an order is accepted, the corresponding amount of steel has to be produced before its due date. Of course, the factory can process no more than one order at a time.

Although the manufacturing process is rather complex, it can be seen as a single production line with a constant throughput. In the following, we assume that producing q<tex2html_verbatim_mark> tons of steel takes exactly q<tex2html_verbatim_mark> seconds (i.e., throughput is 1). The factory runs on a monthly production plan. Before the beginning of the month, all customers‘ orders are collected and Paul and Art determine which of them are going to be accepted and which ones are to be rejected in the next production period. A production schedule is then designed. To keep customers satisfied, Paul and Art want to minimize the total number of orders that are rejected. In the following, we assume that the beginning of the next production plan (i.e., the first day of the next month) corresponds to date 0.

Hogdson and Moore have been appointed as Chief Scientific Officers and you are requested to help them to compute an optimal solution and to build a schedule of all accepted orders (starting time and completion time).

Small Example

Consider the following data set made of 6 orders J1,..., J6<tex2html_verbatim_mark> . For a given order, Jj<tex2html_verbatim_mark> , qj<tex2html_verbatim_mark> denotes the amount of steel required and dj<tex2html_verbatim_mark> is the associated due date.

Order qj<tex2html_verbatim_mark> dj<tex2html_verbatim_mark>
J1<tex2html_verbatim_mark> 6 8
J2<tex2html_verbatim_mark> 4 9
J3<tex2html_verbatim_mark> 7 15
J4<tex2html_verbatim_mark> 8 20
J5<tex2html_verbatim_mark> 3 21
J6<tex2html_verbatim_mark> 5 22

You can check by hand that all orders cannot be accepted and it‘s very unlikely you could find a solution with less than two rejected orders. Here is an optimal solution: Reject J1<tex2html_verbatim_mark> and J4<tex2html_verbatim_mark> , accept all other orders and process them as follows.

Accepted Order Starting Time Completion Time
J2<tex2html_verbatim_mark> 0 4
J3<tex2html_verbatim_mark> 4 11
J5<tex2html_verbatim_mark> 11 14
J6<tex2html_verbatim_mark> 14 19

Note that the production line is never idle.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

Data Each test case is described by one input file that contains all the relevant data: The first line contains the number n<tex2html_verbatim_mark> of orders ( n<tex2html_verbatim_mark> can be as large as 800000 for some test cases). It is followed by n<tex2html_verbatim_mark> lines. Each of which describes an order made of two integer values: the amount of steel (in tons) required for the order (lower than 1000) and its due date (in seconds; lower than 2 x 106<tex2html_verbatim_mark> ).

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

You are required to compute an optimal solution and your program has to write the number of orders that are accepted.

Sample Input

1

6
7 15
8 20
6 8
4 9
3 21
5 22

Sample Output

4

Some Hints from Hogdson and Moore

  • Hogdson and Moore claim that it is optimal to sequence accepted orders in non-decreasing order of due dates.
  • They also claim that there is an optimal solution such that for any two orders Ju<tex2html_verbatim_mark> and Jv<tex2html_verbatim_mark> with qu > qv<tex2html_verbatim_mark> and du < dv<tex2html_verbatim_mark> , if Ju<tex2html_verbatim_mark> is accepted then Jv<tex2html_verbatim_mark> is also accepted.
  • Finally, Hogdson and Moore advise you to ``Keep the Customer Satisfied"

Keep the Customer Satisfied

Gee but it‘s great to be back home
Home is where I want to be.
I‘ve been on the road so long my friend,
And if you came along
I know you couldn‘t disagree.

It‘s the same old story
Everywhere I go,
I get slandered,
Libeled,
I hear words I never heard
In the bible
And I‘m on step ahead of the shoe shine
Two steps away from the county line
Just trying to keep my customers satisfied,
Satisfied.

Deputy sheriff said to me
Tell me what you come here for, boy.
You better get your bags and flee.
You‘re in trouble boy,
And you‘re heading into more.

©Simon & Garfunkel

题意,钢铁厂会接到一些订单,其中有一些无法完成,需要拒绝,他们希望需要拒绝的订单越少越好,要求输出需要拒绝的订单数

贪心,先排序,限期紧的放在前面,在小于当前订单日期限值之前,你当然是肆无忌惮得接下订单了,如果你在选择某一个订单时发现期限会超出,先不要忙着拒绝它,如果你之前选择的某个订单需求数(需求数越大,所耗时间也就越大)比它还大,那就忍痛拒绝那个大订单,反正要求是接下的订单数越多越好,业绩什么的也就不管啦.........赔本赚吆喝吧

还有,怎么找那个更需要拒绝的订单?遍历一遍数组?数组最长可达80万如果遍历时间复杂度为O(n^2),三秒绝对跑不完,所以使用优先队列记录q,快得妥妥的

#include"iostream"
#include"algorithm"
#include"queue"
using namespace std;

const int maxn=800000+10;

struct node
{
    int q,d;
}a[maxn];

bool cmp(struct node a1,struct node a2)
{
    return a1.d<a2.d;
}

int n;

void Init()
{
    cin>>n;
    for(int i=0;i<n;i++) cin>>a[i].q>>a[i].d;
}

void Work()
{
    sort(a,a+n,cmp);
    int ans=n,cur=0;
    priority_queue<int>que;
    for(int i=0;i<n;i++)
    {
      cur+=a[i].q;
      que.push(a[i].q);
     if(cur>a[i].d)
     {
         cur-=que.top();
         que.pop();
         ans--;
     }
    }
    cout<<ans<<endl;
}

int main()
{
    int T,t;
    cin>>T;
    t=T;
    while(T--)
    {
        if(t!=T+1) cout<<endl;
        Init();
        Work();
    }
    return 0;
}
时间: 2024-10-07 08:39:53

集训第四周(高效算法设计)G题 (贪心)的相关文章

集训第四周(高效算法设计)A题 Ultra-QuickSort

原题poj 2299:http://poj.org/problem?id=2299 题意,给你一个数组,去统计它们的逆序数,由于题目中说道数组最长可达五十万,那么O(n^2)的排序算法就不要再想了,接下来的选择是快排,归并,看你喜欢了 这里列出归并的解法: #include"iostream" using namespace std; const int maxn=500000+10; int T[maxn]; int a[maxn]; long long sum; void merg

集训第四周(高效算法设计)N题 (二分查找优化题)

原题:poj3061 题意:给你一个数s,再给出一个数组,要求你从中选出m个连续的数,m越小越好,且这m个数之和不小于s 这是一个二分查找优化题,那么区间是什么呢?当然是从1到数组长度了.比如数组长度为10,你先找5,去枚举每一个区间为5的连续的数,发现存在这样的数,那么就可以继续往左找,反之则往右找,直到左右区间重合,即为正确答案,(有可能是右区间小于左区间,所以每次都应该求区间中点值) #include"iostream" #include"set" #incl

集训第四周(高效算法设计)M题 (扫描法)

原题:UVA11078 题意:给你一个数组,设a[],求一个m=a[i]-a[j],m越大越好,而且i必须小于j 怎么求?排序?要求i小于j呢.枚举?只能说超时无上限.所以遍历一遍数组,设第一个被减数为a[0],之后遇到比a[0]大的数就更新它,再拿这个被减数去减数组中的每一个元素,同时也要不断地更新这个m值. #include"iostream" #include"set" #include"cstring" #include"cst

集训第四周(高效算法设计)P题 (构造题)

Description There are N<tex2html_verbatim_mark> marbles, which are labeled 1, 2,..., N<tex2html_verbatim_mark> . The N<tex2html_verbatim_mark> marbles are put in a circular track in an arbitrary order. In the top part of the track there

集训第四周(高效算法设计)O题 (构造题)

A permutation on the integers from 1 to n is, simply put, a particular rearrangement of these integers. Your task is to generate a given permutation from the initial arrangement 1, 2, 3, . . . , n using only two simple operations. •  Operation 1: You

集训第四周(高效算法设计)I题 (贪心)

Description Shaass has n books. He wants to make a bookshelf for all his books. He wants the bookshelf's dimensions to be as small as possible. The thickness of the i-th book is ti and its pages' width is equal to wi. The thickness of each book is ei

集训第四周(高效算法设计)L题 (背包贪心)

Description John Doe is a famous DJ and, therefore, has the problem of optimizing the placement of songs on his tapes. For a given tape and for each song on that tape John knows the length of the song and the frequency of playing that song. His probl

集训第四周(高效算法设计)K题 (滑窗问题)

UVA 11572 唯一的雪花 题意:给你从1到n的数组,要求求得其中的最长连续不重复子序列,经典的滑窗问题,方法是维护一个窗口,设置左框和右框,然后不断的进行维护和更新 方法一: #include"iostream" #include"set" #include"cstring" #include"cstdio" #include"algorithm" using namespace std; const

集训第四周(高效算法设计)J题 (中途相遇法)

Description The SUM problem can be formulated as follows: given four lists A, B, C, D<tex2html_verbatim_mark> of integer values, compute how many quadruplet (a, b, c, d ) AxBxCxD<tex2html_verbatim_mark> are such that a + b + c + d = 0<tex2h