IEnumerable<T> 接口和GetEnumerator 详解

IEnumerable<T> 接口

.NET Framework 4.6 and 4.5

公开枚举数,该枚举数支持在指定类型的集合上进行简单迭代。

若要浏览此类型的.NET Framework 源代码,请参阅参考源

命名空间:  System.Collections.Generic
程序集:  mscorlib(在 mscorlib.dll 中)

public interface IEnumerable<out T> : IEnumerable

类型参数

   out T

要枚举的对象的类型。

此类型参数是协变。即可以使用指定的类型或派生程度更高的类型。有关协变和逆变的详细信息,请参阅 泛型中的协变和逆变

IEnumerable<T> 类型公开以下成员。

方法

显示: 继承 保护

  名称 描述
GetEnumerator 返回一个循环访问集合的枚举器。

GetEnumerator 详解

返回一个循环访问集合的枚举器。

命名空间:   System.Collections.Generic
程序集:  mscorlib(mscorlib.dll 中)

语法  

IEnumerator<T> GetEnumerator()

返回值

Type: System.Collections.Generic.IEnumerator<T>

用于循环访问集合的枚举数。

备注

返回IEnumerator<T>提供了通过公开来循环访问集合的能力Current属性。读取集合中的数据,但不是能修改集合,您可以使用枚举器。

最初,枚举数位于集合中的第一个元素之前。在此位置上,Current是不确定的。因此,您必须调用MoveNext方法使枚举器前进到之前读取值的集合的第一个元素Current

Current返回同一个对象,直到MoveNext作为再次调用MoveNext设置Current到下一个元素。

如果MoveNext越过集合,该枚举数的末尾将被定位在集合中的最后一个元素之后和MoveNext返回false。当枚举数位于此位置上,对后续调用MoveNext也会返回false。如果最后一次调用到MoveNext返回falseCurrent是不确定的。您不能设置Current再次为集合的第一个元素必须改为创建新的枚举器实例。

一个枚举器没有对集合的独占访问,因此,只要集合保持不变,枚举器保持有效。如果进行了更改到集合中,如添加、 修改,或删除元素),则枚举器将失效,并可能会收到意外的结果时。此外,对集合进行枚举不是线程安全过程。若要保证线程安全,您应枚举期间锁定集合,或实现同步对集合。

集合中的默认实现System.Collections.Generic命名空间时不同步。

using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;
using System.Linq;

public class App
{
    // Excercise the Iterator and show that it‘s more
    // performant.
    public static void Main()
    {
        TestStreamReaderEnumerable();
        Console.WriteLine("---");
        TestReadingFile();
    }

    public static void TestStreamReaderEnumerable()
    {
        // Check the memory before the iterator is used.
        long memoryBefore = GC.GetTotalMemory(true);
      IEnumerable<String> stringsFound;
        // Open a file with the StreamReaderEnumerable and check for a string.
      try {
         stringsFound =
               from line in new StreamReaderEnumerable(@"c:\temp\tempFile.txt")
               where line.Contains("string to search for")
               select line;
         Console.WriteLine("Found: " + stringsFound.Count());
      }
      catch (FileNotFoundException) {
         Console.WriteLine(@"This example requires a file named C:\temp\tempFile.txt.");
         return;
      }

        // Check the memory after the iterator and output it to the console.
        long memoryAfter = GC.GetTotalMemory(false);
        Console.WriteLine("Memory Used With Iterator = \t"
            + string.Format(((memoryAfter - memoryBefore) / 1000).ToString(), "n") + "kb");
    }

    public static void TestReadingFile()
    {
        long memoryBefore = GC.GetTotalMemory(true);
      StreamReader sr;
      try {
         sr = File.OpenText("c:\\temp\\tempFile.txt");
      }
      catch (FileNotFoundException) {
         Console.WriteLine(@"This example requires a file named C:\temp\tempFile.txt.");
         return;
      }

        // Add the file contents to a generic list of strings.
        List<string> fileContents = new List<string>();
        while (!sr.EndOfStream) {
            fileContents.Add(sr.ReadLine());
        }

        // Check for the string.
        var stringsFound =
            from line in fileContents
            where line.Contains("string to search for")
            select line;

        sr.Close();
        Console.WriteLine("Found: " + stringsFound.Count());

        // Check the memory after when the iterator is not used, and output it to the console.
        long memoryAfter = GC.GetTotalMemory(false);
        Console.WriteLine("Memory Used Without Iterator = \t" +
            string.Format(((memoryAfter - memoryBefore) / 1000).ToString(), "n") + "kb");
    }
}

// A custom class that implements IEnumerable(T). When you implement IEnumerable(T),
// you must also implement IEnumerable and IEnumerator(T).
public class StreamReaderEnumerable : IEnumerable<string>
{
    private string _filePath;
    public StreamReaderEnumerable(string filePath)
    {
        _filePath = filePath;
    }

    // Must implement GetEnumerator, which returns a new StreamReaderEnumerator.
    public IEnumerator<string> GetEnumerator()
    {
        return new StreamReaderEnumerator(_filePath);
    }

    // Must also implement IEnumerable.GetEnumerator, but implement as a private method.
    private IEnumerator GetEnumerator1()
    {
        return this.GetEnumerator();
    }
    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator1();
    }
}

// When you implement IEnumerable(T), you must also implement IEnumerator(T),
// which will walk through the contents of the file one line at a time.
// Implementing IEnumerator(T) requires that you implement IEnumerator and IDisposable.
public class StreamReaderEnumerator : IEnumerator<string>
{
    private StreamReader _sr;
    public StreamReaderEnumerator(string filePath)
    {
        _sr = new StreamReader(filePath);
    }

    private string _current;
    // Implement the IEnumerator(T).Current publicly, but implement
    // IEnumerator.Current, which is also required, privately.
    public string Current
    {

        get
        {
            if (_sr == null || _current == null)
            {
                throw new InvalidOperationException();
            }

            return _current;
        }
    }

    private object Current1
    {

        get { return this.Current; }
    }

    object IEnumerator.Current
    {
        get { return Current1; }
    }

    // Implement MoveNext and Reset, which are required by IEnumerator.
    public bool MoveNext()
    {
        _current = _sr.ReadLine();
        if (_current == null)
            return false;
        return true;
    }

    public void Reset()
    {
        _sr.DiscardBufferedData();
        _sr.BaseStream.Seek(0, SeekOrigin.Begin);
        _current = null;
    }

    // Implement IDisposable, which is also implemented by IEnumerator(T).
    private bool disposedValue = false;
    public void Dispose()
    {
        Dispose(true);
        GC.SuppressFinalize(this);
    }

    protected virtual void Dispose(bool disposing)
    {
        if (!this.disposedValue)
        {
            if (disposing)
            {
                // Dispose of managed resources.
            }
            _current = null;
            if (_sr != null) {
               _sr.Close();
               _sr.Dispose();
            }
        }

        this.disposedValue = true;
    }

     ~StreamReaderEnumerator()
    {
        Dispose(false);
    }
}
// This example displays output similar to the following:
//       Found: 2
//       Memory Used With Iterator =     33kb
//       ---
//       Found: 2
//       Memory Used Without Iterator =  206kb
时间: 2024-10-26 18:20:14

IEnumerable<T> 接口和GetEnumerator 详解的相关文章

Android 接口回调机制详解

在使用接口回调的时候发现了一个经常犯的错误,就是回调函数里面的实现有可能是用多线程或者是异步任务去做的,这就会导致我们期望函数回调完毕去返回一个主函数的结果,实际发现是行不通的,因为如果回调是多线程的话你是无法和主函数同步的,也就是返回的数据是错误的,这是非常隐秘的一个错误.那有什么好的方法去实现数据的线性传递呢?先介绍下回调机制原理. 回调函数 回调函数就是一个通过函数指针调用的函数.如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用为调用它所指向的函数时,我们就说这是回调函数

“全栈2019”Java第六十三章:接口与抽象方法详解

难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第六十三章:接口与抽象方法详解 下一章 "全栈2019"Java第六十四章:接口与静态方法详解 学习小组 加入同步学习小组,共同交流与进步. 方式一:关注头条号Gorhaf,私信"Java学习小组". 方式二:关注公众号Gorhaf,回复"Java学习小组&qu

“全栈2019”Java第六十四章:接口与静态方法详解

难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第六十四章:接口与静态方法详解 下一章 "全栈2019"Java第六十五章:接口与默认方法详解 学习小组 加入同步学习小组,共同交流与进步. 方式一:关注头条号Gorhaf,私信"Java学习小组". 方式二:关注公众号Gorhaf,回复"Java学习小组&qu

优雅的实现接口转换——适配器模式详解.md

1.前言 插头转换器我们应该都用过.当我们要使用二插头的电器而身边只有3孔的插座时,一个插头转换器就能解决插头和插座不匹配的问题.如下图所示 插头转换器其实只做了一件事,就是把原本不能使用的三孔插座转换成了能使用的二孔插座.而这也正是我们接下来要讲的适配器模式的本质:把不能被客户端使用的接口转换成了能被客户端使用的接口. 2.适配器模式详解 2.1适配器模式的定义 将一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能够在一起工作. 2.2适配器模式的类结

小程序调用后端接口服务 配置文件详解

前言:为了开发阶段的效率更高,方便项目接口管理,在做web项目时,我们需要把后端提供的接口地址进行配置,这样我们自己在调用时,要方便得多,利己利人.在配置小程序接口地址时,和web的配置大同小异,下面总结几点配置小程序接口地址的思路: 1.所有接口地址,要丢在一个对象里[为了方便下面解释,这里设置一个对象名:config],为什么了,因为要对外暴露,方便外部访问,这样[key:value]方式是最合理的,那就是对象了. 2.真实接口地址,也就是对象键值对的value,要用英文模式下Tab键的上一

接口隔离原则详解--七大面向对象设计原则(4)

 接口隔离原则的来源: 类A通过接口I依赖类B,类C通过接口I依赖类D,如果接口I对于类A和类B来说不是最小接口,则类B和类D必须去实现他们不需要的方法.因为使用多个专门的接口比使用单一的总接口要好,所以便提出了接口隔离原则. 接口隔离原则的目的: 将臃肿的接口I拆分为独立的几个接口,类A和类C分别与他们需要的接口建立依赖关系.也就是采用接口隔离原则. 接口隔离原则的两种定义:  (1) 当把"接口"理解成一个类型所提供的所有方法特征的集合的时候,这就是一种逻辑上的概念,接口的划分

python接口自动化(三十五)-封装与调用--流程类接口关联(详解)

简介 流程相关的接口,主要用 session 关联,如果写成函数(如上篇),s 参数每个函数都要带,每个函数多个参数,这时候封装成类会更方便.在这里我们还是以博客园为例,带着小伙伴们实践一下. 接口封装大致流程 1.在接口测试中,有些接口经常会被用到比如登录的接口,这时候我们可以每个接口都封装成一个方法,如:登录.保存草稿.发布随笔.删除随笔,这四个接口就可以写成四个方法 2.接口封装好了后,后面我们写用例那就直接调用封装好的接口就行了,有些参数,可以参数化,如保存草稿的 title 和 bod

C# WebApi之接口返回类型详解

转自:https://www.cnblogs.com/hnsongbiao/p/9375888.html Webapi的接口返回值主要有四种类型 void无返回值 IHttpActionResult HttpResponseMessage 自定义类型 void无返回值 大家都知道void声明的是一个无返回值的方法,声明一个api控制器方法,例如: public class ValuesController : ApiController { [HttpGet] public void Get()

.NET深入解析LINQ框架(五:IQueryable、IQueryProvider接口详解)

阅读目录: 1.环路执行对象模型.碎片化执行模型(假递归式调用) 2.N层对象执行模型(纵横向对比链式扩展方法) 3.LINQ查询表达式和链式查询方法其实都是空壳子 4.详细的对象结构图(对象的执行原理) 5.IQueryable<T>与IQueryProvider一对一的关系能否改成一对多的关系 6.完整的自定义查询 1]. 环路执行对象模型.碎片化执行模型(假递归式调用) 这个主题扯的可能有点远,但是它关系着整个LINQ框架的设计结构,至少在我还没有搞懂LINQ的本意之前,在我脑海里一直频