【二分图】The Accomodation of Students

Description

There are a group of students. Some of them may know each other, while others don‘t. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other.

Now
you are given all pairs of students who know each other. Your task is to
divide the students into two groups so that any two students in the
same group don‘t know each other.If this goal can be achieved, then
arrange them into double rooms. Remember, only paris appearing in the
previous given set can live in the same room, which means only known
students can live in the same room.

Calculate the maximum number of pairs that can be arranged into these double rooms.

Input

For each data set:
The first line gives two integers, n and
m(1<n<=200), indicating there are n students and m pairs of
students who know each other. The next m lines give such pairs.

Proceed to the end of file.

Output

If these students cannot be divided into two groups, print "No". Otherwise, print the maximum number of pairs that can be arranged in those rooms.

Sample Input

4 4
1 2
1 3
1 4
2 3
6 5
1 2
1 3
1 4
2 5
3 6

Sample Output

No 3

Solution

Code

 1 #include<queue>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<iostream>
 5 using namespace std;
 6
 7 const int A=40000*2+10,B=210;
 8 int s,n,m,x,y,t,k;
 9 int head[B],ex[B],check[B],mch[B];
10 struct edge{
11     int t,n;
12 }e[A];
13 bool flag=1;
14 queue<int>q;
15
16 void build(int f,int tt)
17 {
18     e[++s].t=tt;
19     e[s].n=head[f];
20     head[f]=s;
21 }
22
23 bool bfs()
24 {
25     while(!q.empty())q.pop();
26     q.push(1);
27     ex[1]=1;
28     while(!q.empty())
29     {
30         t=q.front();
31         q.pop();
32         for(int i=head[t];i;i=e[i].n)
33         {
34             if(ex[e[i].t]==-1)
35             {
36                 ex[e[i].t]=!ex[t];
37                 q.push(e[i].t);
38             }
39             else
40             if(ex[e[i].t]==ex[t])
41                 return false;
42         }
43     }
44     return true;
45 }
46
47 bool dfs(int x)
48 {
49     for(int i=head[x];i;i=e[i].n)
50     {
51         k=e[i].t;
52         if(!check[k])
53         {
54             check[k]=1;
55             if(mch[k]==-1||dfs(mch[k]))//
56             {
57                 mch[k]=x;//
58                 return true;
59             }
60         }
61     }
62     return false;
63 }
64
65 void hungerian()
66 {
67     int ans=0;
68     for(int i=0;i<=n;++i)mch[i]=-1;
69     for(int i=1;i<=n;++i)
70     {
71         memset(check,0,sizeof(check));
72         if(dfs(i))++ans;
73     }
74     printf("%d\n",ans/2);//
75 }
76
77 int main()
78 {
79     while(scanf("%d%d",&n,&m)==2)
80     {
81         if(n==1)
82         {printf("No\n");continue;}//
83         s=0;flag=1;
84         memset(head,0,sizeof(head));
85         for(int i=1;i<=n;++i)ex[i]=-1;
86         for(int i=1;i<=m;++i)
87         {
88             scanf("%d%d",&x,&y);
89             build(x,y);
90             build(y,x);
91         }
92         if(!bfs())printf("No\n");
93         else hungerian();
94     }
95     return 0;
96 }

Source

HDU 2444

时间: 2024-11-05 11:38:49

【二分图】The Accomodation of Students的相关文章

hdu2444The Accomodation of Students【判断二分图+最大匹配】

我觉得有必要粘一下英文: The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2502    Accepted Submission(s): 1190 Problem Description There are a group of students. Some of them may

HDU 2444 The Accomodation of Students 二分图判定+最大匹配

题目来源:HDU 2444 The Accomodation of Students 题意:n个人是否可以分成2组 每组的人不能相互认识 就是二分图判定 可以分成2组 每组选一个2个人认识可以去一个双人间 最多可以有几组 思路:二分图判定+最大匹配 #include <cstdio> #include <cstring> #include <vector> using namespace std; const int maxn = 550; int vis[maxn];

HDU 2444 The Accomodation of Students (判断是否是二分图,然后求最大匹配)

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Description There are a group of students. Some of them may know each other, while others don't. For example, A and B know each other, B

HDU 2444 The Accomodation of Students(判断是否是二分图)

题目链接 题意:n个学生,m对关系,每一对互相认识的能住一个房间.问否把这些学生分成两组,要求每组的学生都互不认识.求最多需要多少个房间. 是否能分成两组?也就是说判断是不是二分图,判断二分图的办法,用染色法 把初始点染成黑色,然后与之相连的染成白色,重复,使路径黑白相间, 如果当前点的颜色和与他相连点的颜色相同时,则说明这个图不是二分图 求最多需要多少个房间?也就是求最大匹配数. #include <iostream> #include <cstdio> #include <

hdu2444The Accomodation of Students (最大匹配+判断是否为二分图)

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2244 Accepted Submission(s): 1056 Problem Description There are a group of students. Some of them may know each other,

HDU 2444 The Accomodation of Students二分图判定和匈牙利算法

本题就是先判断是否可以组成二分图,然后用匈牙利算法求出最大匹配. 到底如何学习一种新算法呢? 我也不知道什么方法是最佳的了,因为看书本和大牛们写的匈牙利算法详细分析,看了差不多两个小时没看懂,最后自己直接看代码,居然不到半个小时看懂了.然后就可以直接拿来解题啦. 比如topcoder上有这个算法的很详细的分析,真没看懂. 代码居然比分析更清晰了?我也不好下结论. 但是我觉得主要的思想还是有作用的. 说说我对这个算法的理解吧: 1 假设二分图分为两个集合 U, V,那么从一个集合U出发 2 U的一

hdu 2444 The Accomodation of Students(最大匹配 + 二分图判断)

http://acm.hdu.edu.cn/showproblem.php?pid=2444 The Accomodation of Students Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 2444 Description There are a group of students. Some of them may know

hdu 2444 The Accomodation of Students 判断是否为二分图+最大匹配

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3042    Accepted Submission(s): 1425 Problem Description There are a group of students. Some of them may know each o

HD2444The Accomodation of Students(并查集判断二分图+匹配)

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4091    Accepted Submission(s): 1876 Problem Description There are a group of students. Some of them may know each ot

HDOJ 题目2444 The Accomodation of Students(染色法判二分图,最大匹配)

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2943    Accepted Submission(s): 1376 Problem Description There are a group of students. Some of them may know each o