polyfit
多项式曲线拟合
全页折叠
语法
p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)
说明
返回阶数为 p
= polyfit(x
,y
,n
)n
的多项式 p(x)
的系数,该阶数是 y
中数据的最佳拟合(在最小二乘方式中)。p
中的系数按降幂排列,p
的长度为 n+1
p(x)=p1xn+p2xn−1+...+pnx+pn+1.
[
还返回一个结构体 p
,S
] = polyfit(x
,y
,n
)S
,后者可用作 polyval
的输入来获取误差估计值。
[
还返回 p
,S
,mu
] = polyfit(x
,y
,n
)mu
,后者是一个二元素向量,包含中心化值和缩放值。mu(1)
是 mean(x)
,mu(2)
是 std(x)
。使用这些值时,polyfit
将 x
的中心置于零值处并缩放为具有单位标准差
ˆx=x−‾xσx .
这种中心化和缩放变换可同时改善多项式和拟合算法的数值属性。
示例
将多项式与三角函数拟合
Try This Example
在区间 [0,4*pi]
中沿正弦曲线生成 10 个等间距的点。
x = linspace(0,4*pi,10); y = sin(x);
使用 polyfit
将一个 7 次多项式与这些点拟合。
p = polyfit(x,y,7);
在更精细的网格上计算多项式并绘制结果图。
x1 = linspace(0,4*pi); y1 = polyval(p,x1); figure plot(x,y,‘o‘) hold on plot(x1,y1) hold off
将多项式与点集拟合
欢迎光临程序代写小店https://item.taobao.com/item.htm?spm=a230r.1.14.59.255028c3ALNkZ0&id=586797758241&ns=1&abbucket=15#detail
可直接联系客服QQ交代需求:953586085
Try This Example
创建一个由区间 [0,1]
中的 5 个等间距点组成的向量,并计算这些点处的 。
x = linspace(0,1,5); y = 1./(1+x);
将 4 次多项式与 5 个点拟合。通常,对于 n
个点,可以拟合 n-1
次多项式以便完全通过这些点。
p = polyfit(x,y,4);
在由 0 和 2 之间的点组成的更精细网格上计算原始函数和多项式拟合。
x1 = linspace(0,2); y1 = 1./(1+x1); f1 = polyval(p,x1);
在更大的区间 [0,2]
中绘制函数值和多项式拟合,其中包含用于获取以圆形突出显示的多项式拟合的点。多项式拟合在原始 [0,1]
区间中的效果较好,但在该区间外部很快与拟合函数出现差异。
figure plot(x,y,‘o‘) hold on plot(x1,y1) plot(x1,f1,‘r--‘) legend(‘y‘,‘y1‘,‘f1‘)
对误差函数进行多项式拟合
Try This Example
首先生成 x
点的向量,在区间 [0,2.5]
内等间距分布;然后计算这些点处的 erf(x)
。
x = (0:0.1:2.5)‘; y = erf(x);
确定 6 阶逼近多项式的系数。
p = polyfit(x,y,6)
p = 1×7 0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004
为了查看拟合情况如何,在各数据点处计算多项式,并生成说明数据、拟合和误差的一个表。
f = polyval(p,x); T = table(x,y,f,y-f,‘VariableNames‘,{‘X‘,‘Y‘,‘Fit‘,‘FitError‘})
T=26×4 table X Y Fit FitError ___ _______ __________ ___________ 0 0 0.00044117 -0.00044117 0.1 0.11246 0.11185 0.00060836 0.2 0.2227 0.22231 0.00039189 0.3 0.32863 0.32872 -9.7429e-05 0.4 0.42839 0.4288 -0.00040661 0.5 0.5205 0.52093 -0.00042568 0.6 0.60386 0.60408 -0.00022824 0.7 0.6778 0.67775 4.6383e-05 0.8 0.7421 0.74183 0.00026992 0.9 0.79691 0.79654 0.00036515 1 0.8427 0.84238 0.0003164 1.1 0.88021 0.88005 0.00015948 1.2 0.91031 0.91035 -3.9919e-05 1.3 0.93401 0.93422 -0.000211 1.4 0.95229 0.95258 -0.00029933 1.5 0.96611 0.96639 -0.00028097 ?
在该区间中,插值与实际值非常符合。创建一个绘图,以显示在该区间以外,外插值与实际数据值如何快速偏离。
x1 = (0:0.1:5)‘; y1 = erf(x1); f1 = polyval(p,x1); figure plot(x,y,‘o‘) hold on plot(x1,y1,‘-‘) plot(x1,f1,‘r--‘) axis([0 5 0 2]) hold off
使用中心化和缩放改善数值属性
Try This Example
创建一个由 1750 - 2000 年的人口数据组成的表,并绘制数据点。
year = (1750:25:2000)‘; pop = 1e6*[791 856 978 1050 1262 1544 1650 2532 6122 8170 11560]‘; T = table(year, pop)
T=11×2 table year pop ____ _________ 1750 7.91e+08 1775 8.56e+08 1800 9.78e+08 1825 1.05e+09 1850 1.262e+09 1875 1.544e+09 1900 1.65e+09 1925 2.532e+09 1950 6.122e+09 1975 8.17e+09 2000 1.156e+10
plot(year,pop,‘o‘)
使用带三个输入的 polyfit
拟合一个使用中心化和缩放的 5 次多项式,这将改善问题的数值属性。polyfit
将 year
中的数据以 0 为进行中心化,并缩放为具有标准差 1,这可避免在拟合计算中出现病态的 Vandermonde 矩阵。
[p,~,mu] = polyfit(T.year, T.pop, 5);
使用带四个输入的 polyval
,根据缩放后的年份 (year-mu(1))/mu(2)
计算 p
。绘制结果对原始年份的图。
f = polyval(p,year,[],mu); hold on plot(year,f) hold off
简单线性回归
Try This Example
将一个简单线性回归模型与一组离散二维数据点拟合。
创建几个由样本数据点 (x,y) 组成的向量。将一个一阶多项式与这些数据拟合。
x = 1:50; y = -0.3*x + 2*randn(1,50); p = polyfit(x,y,1);
计算在 x
中的点处拟合的多项式 p
。用这些数据绘制得到的线性回归模型。
f = polyval(p,x); plot(x,y,‘o‘,x,f,‘-‘) legend(‘data‘,‘linear fit‘)
具有误差估计值的线性回归
Try This Example
将一个线性模型拟合到一组数据点并绘制结果,其中包含预测区间为 95% 的估计值。
创建几个由样本数据点 (x,y) 组成的向量。使用 polyfit
对数据进行一阶多项式拟合。指定两个输出以返回线性拟合的系数以及误差估计结构体。
x = 1:100; y = -0.3*x + 2*randn(1,100); [p,S] = polyfit(x,y,1);
计算以 p
为系数的一阶多项式在 x
中各点处的拟合值。将误差估计结构体指定为第三个输入,以便 polyval
计算标准误差的估计值。标准误差估计值在 delta
中返回。
[y_fit,delta] = polyval(p,x,S);
绘制原始数据、线性拟合和 95% 预测区间 。
plot(x,y,‘bo‘) hold on plot(x,y_fit,‘r-‘) plot(x,y_fit+2*delta,‘m--‘,x,y_fit-2*delta,‘m--‘) title(‘Linear Fit of Data with 95% Prediction Interval‘) legend(‘Data‘,‘Linear Fit‘,‘95% Prediction Interval‘)
输入参数
x
- 查询点
向量
查询点,指定为一个向量。x
中的点对应于 y
中包含的拟合函数值。
x
具有重复(或接近重复)的点或者如果 x
可能需要中心化和缩放时的警告消息结果。
数据类型: single
| double
复数支持: 是
y
- 查询点位置的拟合值
向量
查询点位置的拟合值,指定为向量。y
中的值对应于 x
中包含的查询点。
数据类型: single
| double
复数支持: 是
n
- 多项式拟合的阶数
正整数标量
多项式拟合的阶数,指定为正整数标量。n
指定 p
中最左侧系数的多项式幂。
输出参数
p
- 最小二乘拟合多项式系数
向量
最小二乘拟合多项式系数,以向量的形式返回。p
的长度为 n+1
,包含按降幂排列的多项式系数,最高幂为 n
。如果 x
或 y
包含 NaN
值且 n < length(x)
,则 p
的所有元素均为 NaN
。
使用 polyval
计算 p
在查询点处的解。
S
- 误差估计结构体
结构体
误差估计结构体。此可选输出结构体主要用作 polyval
函数的输入,以获取误差估计值。S
包含以下字段:
字段 | 说明 |
---|---|
R |
Vandermonde 矩阵 x 的 QR 分解的三角因子 |
df |
自由度 |
normr |
残差的范数 |
如果 y
中的数据是随机的,则 p
的估计协方差矩阵是 (Rinv*Rinv‘)*normr^2/df
,其中 Rinv
是 R
的逆矩阵。
如果 y
中数据的误差呈独立正态分布,并具有常量方差,则 [y,delta] = polyval(...)
可生成至少包含 50% 的预测值的误差边界。即 y
± delta
至少包含 50% 对 x
处的未来观测值的预测值。
mu
- 中心化值和缩放值
二元素向量
中心化值和缩放值,以二元素向量形式返回。mu(1)
为 mean(x)
,mu(2)
为 std(x)
。这些值以单位标准差将 x
中的查询点的中心置于零值处。
使用 mu
作为 polyval
的第四个输入以计算 p
在缩放点 (x - mu(1))/mu(2)
处的解。
局限性
- 在使用许多点的问题中,使用
polyfit
增加多项式拟合的阶并不能始终得到较好的拟合。高次多项式可以在数据点之间振动,导致与数据之间的拟合较差。在这些情况下,可使用低次多项式拟合(点之间倾向于更平滑)或不同的方法,具体取决于该问题。 - 多项式在本质上是无边界的振荡函数。所以,它们并不非常适合外插有界的数据或单调(递增或递减)的数据。
算法
polyfit
使用 x
构造具有 n+1
列和 m = length(x)
行的 Vandermonde 矩阵 V
并生成线性方程组
????????xn1xn2?xnmxn−11xn−12?xn−1m????11?1??????????????p1p2?pn+1??????=??????y1y2?ym?????? ,
其中 polyfit
使用 p = V\y
求解。由于 Vandermonde 矩阵中的列是向量 x
的幂,因此条件数 V
对于高阶拟合来说通常较大,生成一个奇异系数矩阵。在这些情况下,中心化和缩放可改善系统的数值属性以产生更可靠的拟合。
原文地址:https://www.cnblogs.com/chenbocheng/p/10844068.html