Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
Examples:
[2,3,4]
, the median is 3
[2,3]
, the median is (2 + 3) / 2 = 2.5
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Your job is to output the median array for each window in the original array.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3.
Window position Median --------------- ----- [1 3 -1] -3 5 3 6 7 1 1 [3 -1 -3] 5 3 6 7 -1 1 3 [-1 -3 5] 3 6 7 -1 1 3 -1 [-3 5 3] 6 7 3 1 3 -1 -3 [5 3 6] 7 5 1 3 -1 -3 5 [3 6 7] 6
Therefore, return the median sliding window as [1,-1,-1,3,5,6]
.
Note:
You may assume k
is always valid, ie: k
is always smaller than input array‘s size for non-empty array.
中位数是有序序列最中间的那个数。如果序列的大小是偶数,则没有最中间的数;此时中位数是最中间的两个数的平均数。
例如:
[2,3,4]
,中位数是 3
[2,3]
,中位数是 (2 + 3) / 2 = 2.5
给出一个数组 nums,有一个大小为 k 的窗口从最左端滑动到最右端。窗口中有 k 个数,每次窗口移动 1 位。你的任务是找出每次窗口移动后得到的新窗口中元素的中位数,并输出由它们组成的数组。
例如:
给出 nums = [1,3,-1,-3,5,3,6,7]
,以及 k = 3。
窗口位置 中位数 --------------- ----- [1 3 -1] -3 5 3 6 7 1 1 [3 -1 -3] 5 3 6 7 -1 1 3 [-1 -3 5] 3 6 7 -1 1 3 -1 [-3 5 3] 6 7 3 1 3 -1 -3 [5 3 6] 7 5 1 3 -1 -3 5 [3 6 7] 6
因此,返回该滑动窗口的中位数数组 [1,-1,-1,3,5,6]
。
提示:
假设k
是合法的,即:k
始终小于输入的非空数组的元素个数.
408ms
1 class Solution { 2 func medianSlidingWindow(_ nums: [Int], _ k: Int) -> [Double] { 3 guard nums.count >= k else { 4 return [] 5 } 6 7 var result = [Double]() 8 result.reserveCapacity(nums.count - k + 1) 9 var window = nums[0..<k].sorted() 10 for i in 0..<(nums.count - k + 1) { 11 if i > 0 { 12 window.insertOrdered(nums[i - 1 + k]) 13 } 14 result.append(window.median) 15 window.remove(nums[i]) 16 } 17 18 return result 19 } 20 } 21 22 extension Array where Element == Int { 23 var median: Double { 24 return (Double(self[(count - 1) / 2]) + Double(self[(count) / 2])) / 2 25 } 26 27 mutating func insertOrdered(_ val: Int) { 28 for i in 0..<count { 29 if self[i] > val { 30 self.insert(val, at: i) 31 return 32 } 33 } 34 append(val) 35 } 36 37 mutating func remove(_ val: Int) { 38 for i in 0..<count { 39 if self[i] == val { 40 self.remove(at: i) 41 return 42 } 43 } 44 } 45 }
Runtime: 492 ms
Memory Usage: 20.3 MB
1 class Solution { 2 func medianSlidingWindow(_ nums: [Int], _ k: Int) -> [Double] { 3 var k = k 4 var res:[Double] = [Double]() 5 var record:[(Int,Int)] = [(Int,Int)]() 6 for i in 0..<k 7 { 8 record.append((nums[i],i)) 9 } 10 record.sort(by: cmp) 11 update(&res, &record, &k) 12 for i in k..<nums.count 13 { 14 record.remove(at: beforePos(&record, i - k)) 15 record.insert((nums[i],i), at: binPos(&record, nums[i])) 16 update(&res, &record, &k) 17 } 18 return res 19 } 20 21 func cmp(_ a:(Int,Int),_ b:(Int,Int)) -> Bool 22 { 23 if a.0 == b.0 {return a.1 < b.1} 24 return a.0 < b.0 25 } 26 27 func binPos(_ record:inout [(Int,Int)],_ target:Int) -> Int 28 { 29 var left:Int = 0 30 var right:Int = record.count 31 while(left < right) 32 { 33 let middle:Int = left + (right - left) / 2 34 if record[ middle].0 == target 35 { 36 return middle 37 } 38 else if record[ middle].0 < target 39 { 40 left = middle + 1 41 } 42 else 43 { 44 right = middle 45 } 46 } 47 return left 48 } 49 50 func beforePos(_ record:inout [(Int,Int)],_ j:Int) -> Int 51 { 52 for i in 0..<record.count 53 { 54 if record[i].1 == j 55 { 56 return i 57 } 58 } 59 return 0 60 } 61 62 func update(_ res:inout [Double],_ record:inout [(Int,Int)],_ k:inout Int ) 63 { 64 if k % 2 == 1 65 { 66 res.append(Double(record[ record.count / 2].0)) 67 } 68 else 69 { 70 res.append(Double(record[ record.count / 2].0) * 1.0 / 2 + Double(record[ record.count/2-1].0) * 1.0 / 2) 71 } 72 } 73 }
636ms
1 class Solution { 2 var maxHeap = Heap<Int>(sort: >) 3 var minHeap = Heap<Int>(sort: <) 4 5 func medianSlidingWindow(_ nums: [Int], _ k: Int) -> [Double] { 6 var res = [Double]() 7 8 for (index, value) in nums.enumerated() { 9 if maxHeap.isEmpty || value <= maxHeap.peek()! { 10 maxHeap.insert(value) 11 } else { 12 minHeap.insert(value) 13 } 14 15 balance() 16 17 let removeTarget = index - k 18 if removeTarget >= 0 { 19 if nums[removeTarget] > maxHeap.peek()! { 20 minHeap.remove(node: nums[removeTarget]) 21 } else { 22 maxHeap.remove(node: nums[removeTarget]) 23 } 24 } 25 26 balance() 27 28 if index >= k - 1 { 29 if k % 2 == 0 { 30 res.append((Double(minHeap.peek()!) + Double(maxHeap.peek()!)) / 2) 31 } else { 32 res.append(Double(maxHeap.peek()!)) 33 } 34 } 35 } 36 37 return res 38 } 39 40 func balance() { 41 while maxHeap.count < minHeap.count { 42 maxHeap.insert(minHeap.remove()!) 43 } 44 45 while minHeap.count < maxHeap.count - 1 { 46 minHeap.insert(maxHeap.remove()!) 47 } 48 } 49 } 50 51 52 ////// swfit heap: 53 public struct Heap<T> { 54 /** The array that stores the heap‘s nodes. */ 55 var nodes = [T]() 56 57 /** 58 * Determines how to compare two nodes in the heap. 59 * Use ‘>‘ for a max-heap or ‘<‘ for a min-heap, 60 * or provide a comparing method if the heap is made 61 * of custom elements, for example tuples. 62 */ 63 private var orderCriteria: (T, T) -> Bool 64 65 /** 66 * Creates an empty heap. 67 * The sort function determines whether this is a min-heap or max-heap. 68 * For comparable data types, > makes a max-heap, < makes a min-heap. 69 */ 70 public init(sort: @escaping (T, T) -> Bool) { 71 orderCriteria = sort 72 } 73 74 /** 75 * Creates a heap from an array. The order of the array does not matter; 76 * the elements are inserted into the heap in the order determined by the 77 * sort function. For comparable data types, ‘>‘ makes a max-heap, 78 * ‘<‘ makes a min-heap. 79 */ 80 public init(array: [T], sort: @escaping (T, T) -> Bool) { 81 orderCriteria = sort 82 configureHeap(from: array) 83 } 84 85 /** 86 * Configures the max-heap or min-heap from an array, in a bottom-up manner. 87 * Performance: This runs pretty much in O(n). 88 */ 89 private mutating func configureHeap(from array: [T]) { 90 nodes = array 91 for i in stride(from: (nodes.count / 2 - 1), through: 0, by: -1) { 92 shiftDown(i) 93 } 94 } 95 96 public var isEmpty: Bool { 97 return nodes.isEmpty 98 } 99 100 public var count: Int { 101 return nodes.count 102 } 103 104 /** 105 * Returns the index of the parent of the element at index i. 106 * The element at index 0 is the root of the tree and has no parent. 107 */ 108 @inline(__always) internal func parentIndex(ofIndex i: Int) -> Int { 109 return (i - 1) / 2 110 } 111 112 /** 113 * Returns the index of the left child of the element at index i. 114 * Note that this index can be greater than the heap size, in which case 115 * there is no left child. 116 */ 117 @inline(__always) internal func leftChildIndex(ofIndex i: Int) -> Int { 118 return 2 * i + 1 119 } 120 121 /** 122 * Returns the index of the right child of the element at index i. 123 * Note that this index can be greater than the heap size, in which case 124 * there is no right child. 125 */ 126 @inline(__always) internal func rightChildIndex(ofIndex i: Int) -> Int { 127 return 2 * i + 2 128 } 129 130 /** 131 * Returns the maximum value in the heap (for a max-heap) or the minimum 132 * value (for a min-heap). 133 */ 134 public func peek() -> T? { 135 return nodes.first 136 } 137 138 /** 139 * Adds a new value to the heap. This reorders the heap so that the max-heap 140 * or min-heap property still holds. Performance: O(log n). 141 */ 142 public mutating func insert(_ value: T) { 143 nodes.append(value) 144 shiftUp(nodes.count - 1) 145 } 146 147 /** 148 * Adds a sequence of values to the heap. This reorders the heap so that 149 * the max-heap or min-heap property still holds. Performance: O(log n). 150 */ 151 public mutating func insert<S: Sequence>(_ sequence: S) where S.Iterator.Element == T { 152 for value in sequence { 153 insert(value) 154 } 155 } 156 157 /** 158 * Allows you to change an element. This reorders the heap so that 159 * the max-heap or min-heap property still holds. 160 */ 161 public mutating func replace(index i: Int, value: T) { 162 guard i < nodes.count else { return } 163 164 remove(at: i) 165 insert(value) 166 } 167 168 /** 169 * Removes the root node from the heap. For a max-heap, this is the maximum 170 * value; for a min-heap it is the minimum value. Performance: O(log n). 171 */ 172 @discardableResult public mutating func remove() -> T? { 173 guard !nodes.isEmpty else { return nil } 174 175 if nodes.count == 1 { 176 return nodes.removeLast() 177 } else { 178 // Use the last node to replace the first one, then fix the heap by 179 // shifting this new first node into its proper position. 180 let value = nodes[0] 181 nodes[0] = nodes.removeLast() 182 shiftDown(0) 183 return value 184 } 185 } 186 187 /** 188 * Removes an arbitrary node from the heap. Performance: O(log n). 189 * Note that you need to know the node‘s index. 190 */ 191 @discardableResult public mutating func remove(at index: Int) -> T? { 192 guard index < nodes.count else { return nil } 193 194 let size = nodes.count - 1 195 if index != size { 196 nodes.swapAt(index, size) 197 shiftDown(from: index, until: size) 198 shiftUp(index) 199 } 200 return nodes.removeLast() 201 } 202 203 /** 204 * Takes a child node and looks at its parents; if a parent is not larger 205 * (max-heap) or not smaller (min-heap) than the child, we exchange them. 206 */ 207 internal mutating func shiftUp(_ index: Int) { 208 var childIndex = index 209 let child = nodes[childIndex] 210 var parentIndex = self.parentIndex(ofIndex: childIndex) 211 212 while childIndex > 0 && orderCriteria(child, nodes[parentIndex]) { 213 nodes[childIndex] = nodes[parentIndex] 214 childIndex = parentIndex 215 parentIndex = self.parentIndex(ofIndex: childIndex) 216 } 217 218 nodes[childIndex] = child 219 } 220 221 /** 222 * Looks at a parent node and makes sure it is still larger (max-heap) or 223 * smaller (min-heap) than its childeren. 224 */ 225 internal mutating func shiftDown(from index: Int, until endIndex: Int) { 226 let leftChildIndex = self.leftChildIndex(ofIndex: index) 227 let rightChildIndex = leftChildIndex + 1 228 229 // Figure out which comes first if we order them by the sort function: 230 // the parent, the left child, or the right child. If the parent comes 231 // first, we‘re done. If not, that element is out-of-place and we make 232 // it "float down" the tree until the heap property is restored. 233 var first = index 234 if leftChildIndex < endIndex && orderCriteria(nodes[leftChildIndex], nodes[first]) { 235 first = leftChildIndex 236 } 237 if rightChildIndex < endIndex && orderCriteria(nodes[rightChildIndex], nodes[first]) { 238 first = rightChildIndex 239 } 240 if first == index { return } 241 242 nodes.swapAt(index, first) 243 shiftDown(from: first, until: endIndex) 244 } 245 246 internal mutating func shiftDown(_ index: Int) { 247 shiftDown(from: index, until: nodes.count) 248 } 249 } 250 251 // MARK: - Searching 252 253 extension Heap where T: Equatable { 254 /** Get the index of a node in the heap. Performance: O(n). */ 255 public func index(of node: T) -> Int? { 256 return nodes.index(where: { $0 == node }) 257 } 258 259 /** Removes the first occurrence of a node from the heap. Performance: O(n log n). */ 260 @discardableResult public mutating func remove(node: T) -> T? { 261 if let index = index(of: node) { 262 return remove(at: index) 263 } 264 return nil 265 } 266 }
原文地址:https://www.cnblogs.com/strengthen/p/10805204.html