POJ3525:Most Distant Point from the Sea(二分+半平面交)

pro:给定凸多边形,求凸多边形内的点到最近边界的最远距离。

sol:显然是二分一个圆,使得圆和凸多边形不相交,但是这样很难实现。 由于是凸多边形,我们可以把二分圆转化为二分凸多边形的移动。 如果每一边向左移动Mid后,任然存在“核”,则表示存在一点合法。

直线移动:移动起点即可,方向不变。

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=10010;
const double eps=1e-12;
struct point{
    double x,y;
    point(){}
    point(double xx,double yy):x(xx),y(yy){}
};
struct line{
    point a;//起点
    point p;//起点到终点的向量
    double angle;
};
double dot(point a,point b){ return a.x*b.x+a.y*b.y;}
double det(point a,point b){ return a.x*b.y-a.y*b.x;}
point operator *(point A,double p){ return point(A.x*p,A.y*p);}
point operator +(point A,point B){return point(A.x+B.x,A.y+B.y);}
point operator -(point A,point B){return point(A.x-B.x,A.y-B.y);}
double getangle(point a){ return atan2(a.y,a.x);}
double getangle(line a){ return getangle(a.p);}
point llintersect(line A,line B)
{
    point C=A.a-B.a;
    double t=det(C,B.p)/det(B.p,A.p);
    return A.a+A.p*t;
}
point s[maxn]; line t[maxn],q[maxn]; int head,tail;
bool cmp(line a,line b){
    double A=getangle(a),B=getangle(b);
    point t=(b.a+b.p)-a.a;
    if(fabs(A-B)<eps) return det(a.p,t)>=0.0;
    return A<B;
}
bool onright(line P,line a,line b)
{
    point o=llintersect(a,b);
    point Q=o-P.a;
    return det(Q,P.p)>0; //如果同一直线上不能相互看到,则>=0
}
void Change(int i,double Mid) //(-y,x)
{
    point p=point(-1.0*t[i].p.y,t[i].p.x);
    t[i].a=t[i].a+p*(Mid/sqrt(dot(t[i].p,t[i].p)));
}
bool halfplaneintersect(int N,double Mid)
{
    s[N+1]=s[1];
    rep(i,1,N) t[i].a=s[i],t[i].p=s[i+1]-s[i];
    rep(i,1,N) Change(i,Mid);
    sort(t+1,t+N+1,cmp);
    int tot=0;
    rep(i,1,N-1) {
        if(fabs(getangle(t[i])-getangle(t[i+1]))>eps)
          t[++tot]=t[i];
    }
    t[++tot]=t[N]; head=tail=0;
    rep(i,1,tot){
        while(tail>head+1&&onright(t[i],q[tail],q[tail-1])) tail--;
        while(tail>head+1&&onright(t[i],q[head+1],q[head+2])) head++;
        q[++tail]=t[i];
    }
    while(tail>head+1&&onright(t[head+1],q[tail],q[tail-1])) tail--;return tail-head>2;
}
void solve(int N)
{
    for(int i=1;i<=N;i++) scanf("%lf%lf",&s[i].x,&s[i].y);
    double L=0,R=200010,Mid,ans; int T=50;
    while(T--){
        Mid=(L+R)/2;
        if(halfplaneintersect(N,Mid)) ans=Mid,L=Mid;
        else R=Mid;
    }
    printf("%.10lf\n",ans);
}
int main()
{
    int N;
    while(~scanf("%d",&N)&&N) solve(N);
    return 0;
}

原文地址:https://www.cnblogs.com/hua-dong/p/10675484.html

时间: 2024-10-10 15:10:53

POJ3525:Most Distant Point from the Sea(二分+半平面交)的相关文章

poj3525Most Distant Point from the Sea(半平面交)

链接 求凸多边形内一点距离边最远. 做法:二分+半平面交判定. 二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核. 本想自己写一个向内推进..仔细一看发现自己的平面交模板上自带.. 1 #include <iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<stdlib.h> 6 #include<vector>

POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 1 #include <stdio.h> 2 #include <string.h> 3 #include <iostream> 4 #include <math.h> 5 const double eps = 1e-10 ; 6 7 using namespace std ; 8 9 struct node 10 { 11 do

POJ3525-Most Distant Point from the Sea(二分+半平面交)

Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   Accepted: 1847   Special Judge Description The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural t

POJ 3525 Most Distant Point from the Sea 二分+半平面交

题目大意:给出一个岛的海岸线的轮廓,求这个岛上的所有点到海岸的最长距离是多少. 思路:求多边形内切圆的问题要用二分+半平面交解决.二分半径的长度,然后将所有的边向左侧移动这个二分的长度,然后利用半平面交来判断是否能够满足条件.如果满足条件就提高下界,否则减小上界. 我的移动的方法是这样的,首先每条边都要用点向量式来表示,就是边上任意一点和这条边的方向向量.这样做以后的操作会方便很多.然后将每个直线的向左的法向量求出来(比如l的向量是v(x,y),那么它向左侧的法向量是(-y,x)),然后将法向量

poj 3525Most Distant Point from the Sea【二分+半平面交】

相当于多边形内最大圆,二分半径r,然后把每条边内收r,求是否有半平面交(即是否合法) #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> using namespace std; const int N=205; const double eps=1e-6; int n; struct dian { double x,y; dian(double X=0,double

POJ3525 Most Distant Point from the Sea

半平面交+二分 二分最远距离把每个直线往里移这个距离然后看一下半平面交是否存在就好 然后注意精度问题 [poj G++需要用%f C++没有问题 //Love and Freedom. #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #define inf 20021225 #define ll long long #define db double #define

例4.10 POJ3525/LA3890离海最远的点 半平面交 + 二分法 + double小数点后有效位数处理方式/printf与g++、c++的问题

0) 题意: 题意很简单,给出一张四面环海的岛屿的地图,岛屿用顶点表示(题目数据保证岛屿是凸多边形--所谓凸多边形与凹多边形区别,凸多边形就是把一个多边形任意一边向两方无限延长成为一条直线,如果多边形的其他各边均在此直线的同旁,那么这个多边形就叫做凸多边形.)找出岛屿上距离大海距离最长的一个点.即求岛屿上距离岛屿各条边边中最短的距离是所有点中最长的那个点.即求岛屿中的内接圆的圆心点.输出这个点到岛屿的边的最短的距离.即该岛屿中那个内接圆的半径... 分析: 半平面交求内核点集是一个点的情况(用精

UVa 1475 (二分+半平面交) Jungle Outpost

题意: 有n个瞭望塔构成一个凸n边形,敌人会炸毁一些瞭望台,剩下的瞭望台构成新的凸包.在凸多边形内部选择一个点作为总部,使得敌人需要炸毁的瞭望塔最多才能使总部暴露出来.输出敌人需要炸毁的数目. 分析: 在炸毁同样数量的瞭望塔时,如何爆破才能使暴露出的面积最大.那就是集中火力炸掉连续的几个瞭望塔.直觉上是这样的,我不会证明这个结论.因为是连续爆破,所以k次爆破后还保留的部分就是一个半平面,枚举这k个爆破点,如果这些半平面交非空则总部可以设在这里. k值是通过二分来确定的,下界是1,上界是n-3(这

UVA 1475 - Jungle Outpost(二分 + 半平面交)

题目链接:点击打开链接 思路:首先,我们要知道一个贪心结论:敌人如果有k个炸弹, 那么他一定是炸连续的k个点, 这样会使得炸的面积最大.  那么我们只要二分炸弹数mid,每隔mid个点重新建立一个平面, 仍然是n个平面, 代表n种可能情况, 那么如果他们的交存在, 那么司令部只要放在这个平面交的面积内就行了.  所以问题迎刃而解, 二分答案, 用半平面交判断答案是否可行. 细节参见代码: #include <cstdio> #include <cstring> #include &