人脸识别技术在安防行业应用中的优势

人脸识别技术在我国应用较多的是身份识别领域,它的目标市场主要是办公市场和驾校、工地等安全系数较高的行业应用领域。办公市场,即公司的门禁考勤,由于系统最多可识别上千人,大多数公司都只需要一套或几套产品就可以满足需求,所以这类市场所需的产品量不大。于是,厂商就把目标转向了行业应用领域,如驾校、工地等安全系数较高的场所,这些领域所需的产品量比较大。

中国的人脸识别技术发展追至上世纪九十年代末,在经历了“技术引进——专业市场导入——技术完善——技术应用——各行业领域使用”等五个阶段后,到目前为止,随着国内人脸识别技术水平的不断成熟,该技术越来越多的被推广到安防领域,延伸出考勤机、门禁机等多种产品,产品系列达20多种类型,可以全面覆盖煤矿、楼宇、银行、军队、社会福利保障、电子商务及安全防务等领域。

人脸识别技术是一门融合生物学、心理学和认知学等多学科、多技术(模式识别、图像处理、计算机视觉等)的新的生物识别技术,可用于身份确认(一对一比对)、身份鉴别(一对多匹配)、访问控制(门监系统)、安全监控(银行、海关监控)、人机交互(虚拟现实、游戏)等,因其技术特征而具有广泛的市场应用前景。

相比于其他识别技术,人脸识别的应用优势明显,主要集中在三个方面:

一是自然性,即指该识别方式同人类(包括其它生物)进行个体识别时所利用的生物特征相同,是通过观察比较人脸区分和确认身份;具有自然性的识别还有语音识别和体形识别,而指纹识别和虹膜识别等因人类或其他生物不能通过此类生物特征区别个体所以不具备自然性;

二是非强制性,被识别的人脸图像信息可以主动获取而不被被测个体察觉,人脸识别是利用可见光获取人脸图像信息,而不同于指纹识别或者虹膜识别需要利用电子压力传感器采集指纹,或者利用红外线采集虹膜图像等;

三是非接触性,相比较其他生物识别技术而言,人脸识别是非接触的,用户不需要和设备直接接触,而同时能够满足在实际应用场景下进行多个人脸的分拣、判断及识别。

原文地址:https://blog.51cto.com/14151193/2358608

时间: 2024-11-06 09:59:08

人脸识别技术在安防行业应用中的优势的相关文章

校园考勤中的人脸识别技术应用

考勤是公司日常管理中不可缺少的一部分,市场需求庞大,而随着人工智能时代的到来,考勤系统又该如何发展?今天点点时光小编就为大家介绍分析校园考勤中的人脸识别技术应用,希望帮助大家更加了解人工智能考勤.从工业革命到智能时代,我们经历了几代的变革而现在人类已经步入智能机器的全新时代.人脸识别技术已经成为我国人工智能领域首个成熟技术,并开始在多个领域大范围应用.一个超出人们想象的"刷脸"时代即将到来.AI赋能教育,其中人脸识别技术现在已经开始应用在文化教育.校园安全一直是学校.社会最关心的问题,

人脸识别技术应用场景与前景

随着人工智能的发展,人脸识别也不落后,争相向人们展示它的风采,在一些比较发达的城市,普遍运用刷脸的方式来解决问题,在不知不觉中大家都要靠脸吃饭了,这绝对不是贬义词.大家都知道现下流行的小鲜肉.网红什么的,都是颜值高的,偶像明星靠脸吃饭.如今不光是作为明星名人才能靠脸吃饭,我们这些普通老百姓也能如此. 人脸识别技术经历了可见光图像人脸识别.三维图像人脸识别/热成像人脸识别.基于主动近红外图像的多光源人脸识别三层进化过程,逐渐缓解和解决了光线等环境的变化对于人脸识别的影响,加之算法的不断精准演化,人

支持Android、iOS系统的人脸识别技术

随着深度学习方法的应用,支持Android.iOS系统的人脸识别技术的识别率已经得到质的提升,目前我司的支持Android.iOS系统的人脸识别技术率已经达到99%.支持Android.iOS系统的人脸识别技术与其他生物特征识别技术相比,在实际应用中具有天然独到的优势:通过摄像头直接获取,可以非接触的方式完成识别过程,方便快捷.目前我司的支持Android.iOS系统的人脸识别技术已应用在金融.教育.景区.旅运.社保等领域. 支持Android.iOS系统的人脸识别技术主要分为两部分: 第一部为

三维人脸识别技术使我们更好地认识彼此

人脸识别,一种基于人的脸部特征信息进行身份认证的生物特征识别技术.近年来,随着欧美发达国家人脸识别技术开始进入实用阶段后,人脸识别迅速成为近年来全球的一个市场热点,它具有如下显著优点: ·非接触,智能交互,用户接受程度高. ·直观性突出,符合人"以貌识人"的认知规律. ·适应性强,不易仿冒,安全性好.·摄像头的大量普及,易于推广使用. 综上所述,人脸识别被人们称为最自然.最直观的一种生物特征识别技术.可以广泛应用于公安.安全.海关.金融.军队.机场.边防口岸.安防等多个重要行业及领域,

人脸识别技术特点及难点

人脸识别技术特点 人脸识别主要的特点是利用人的脸部特征作为一种身份辨识的方式,通过采集含有人脸的图像或视频流,自动对图像或视频中的人脸进行检测定位.图像预处理.特征提取和匹配识别过程,达到识别不同人身份的目的.因此,利用人脸识别技术的这个特点可以在不同场合中实现各种各样的智能化应用. 人脸识别的优势还有以下四个方面: (1)自然性.所谓的自然性是指通过观察就可以比较人脸来区分和确认身份. (2)非强制性.被识别的人脸图像信息可以主动获取而不被被测个体察觉,对个体是隐蔽的. (3)非接触性.相比较

人脸识别技术探讨:1:1,1:小N/大N,大姿态识别,活体识别

人脸识别是一种基于人的脸部特征信息进行身份认证的生物特征识别技术.静态人脸识别和动态人脸识别静态人脸识别是在特定的区域或者范围内来采集人脸照片并进行识别,如当前常见的门禁考勤应用.又或者是输入一张照片到人脸识别系统,如Facebook应用中采集用户的标签照片.又如警察输入照片并搜索数据库查看他/她是谁.在这两种情况下,我们都是输入一张照片来进行人脸识别.静态人脸识别的工作流程包括检测人脸.人脸对齐.提取特征向量(我们在后文也会谈及),然后将提取的特征向量与数据库中的特征向量进行比较,以确定他/她

人脸识别技术及应用,二次开发了解一下

得益于移动设备和数码摄像的高速发展,人脸识别技术突飞猛进,已经成为多项产品的主要应用支撑或重要配置.本文对目前人脸识别的三种技术及其发展方向和应用进行详尽的介绍,希望能对大家的产品开发工作提供参考. 人脸识别作为一项互联网领域热门的技术,在互联网产品很多领域都有着广泛的应用. 很多产品经理在工作中经常会遇到老板或需求部门来一句:“我们来搞个人脸识别吧.”但人脸识别发展至今已经成了一个广泛概念,通过几项不同的技术提供不同的产品应用服务.不同角色的人在不同环境里说出的人脸识别,其期待的产品和背后的技

一文读懂人脸识别技术

近日,人脸识别技术因多次在抓逃犯的过程中"立功",再度走"红".从20世纪60年代起,人脸识别研究开启,发展到今天有哪些进展?该产业里的竞争,是人工智能投资泡沫带来的浮躁,还是市场规模将持续突进? 何谓人脸识别技术? 20世纪60年代,人脸识别工程化应用研究正式开启.初期的方法主要利用了人脸的几何结构,通过分析人脸器官特征点及其之间的拓扑关系进行辨识.这种方法简单直观,但是一旦人脸姿态.表情发生变化,则精度严重下降. 如今的解决方案多是基于主动近红外图像的多光源人脸

最新人脸识别技术方案

这两年,随着科技的迅速发展,人脸识别已经逐渐成为了新时期生物识别技术应用的重要领域,忘记密码了?没事儿,咱还可以"刷脸"!今天,小编将带大家了解一下最新的人脸识别技术,看看这项技术发展到哪一步了. 传统的人脸识别技术主要是基于可见光图像的人脸识别,人们也比较熟悉这样的识别方式.不过,这种方式的缺点其实非常明显,光线的限制性非常大,并不能满足实际的需要.解决光照问题的方案有三维图像人脸识别,和热成像人脸识别.但这两种技术还远不成熟,识别效果不尽人意. 迅速发展起来的一种解决方案是基于主动