转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/50217655
随机抽样一致性(RANSAC)算法,可以在一组包含“外点”的数据集中,采用不断迭代的方法,寻找最优参数模型,不符合最优模型的点,被定义为“外点”。在图像配准以及拼接上得到广泛的应用,本文将对RANSAC算法在OpenCV中角点误匹配对的检测中进行解析。
1.RANSAC原理
OpenCV中滤除误匹配对采用RANSAC算法寻找一个最佳单应性矩阵H,矩阵大小为3×3。RANSAC目的是找到最优的参数矩阵使得满足该矩阵的数据点个数最多,通常令h33=1来归一化矩阵。由于单应性矩阵有8个未知参数,至少需要8个线性方程求解,对应到点位置信息上,一组点对可以列出两个方程,则至少包含4组匹配点对。
其中(x,y)表示目标图像角点位置,(x‘,y‘)为场景图像角点位置,s为尺度参数。
RANSAC算法从匹配数据集中随机抽出4个样本并保证这4个样本之间不共线,计算出单应性矩阵,然后利用这个模型测试所有数据,并计算满足这个模型数据点的个数与投影误差(即代价函数),若此模型为最优模型,则对应的代价函数最小。
-----------------------------------------------------------------------------------------------------------------
RANSAC算法步骤:
1. 随机从数据集中随机抽出4个样本数据 (此4个样本之间不能共线),计算出变换矩阵H,记为模型M;
2. 计算数据集中所有数据与模型M的投影误差,若误差小于阈值,加入内点集 I ;
3. 如果当前内点集 I 元素个数大于最优内点集 I_best , 则更新 I_best = I,同时更新迭代次数k ;
4. 如果迭代次数大于k,则退出 ; 否则迭代次数加1,并重复上述步骤;
注:迭代次数k在不大于最大迭代次数的情况下,是在不断更新而不是固定的;
其中,p为置信度,一般取0.995;w为"内点"的比例 ; m为计算模型所需要的最少样本数=4;
-----------------------------------------------------------------------------------------------------------------
2.例程
OpenCV中此功能通过调用findHomography函数调用,下面是个例程:
#include <iostream> #include "opencv2/opencv.hpp" #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" using namespace cv; using namespace std; int main(int argc, char** argv) { Mat obj=imread("F:\\Picture\\obj.jpg"); //载入目标图像 Mat scene=imread("F:\\Picture\\scene.jpg"); //载入场景图像 if (obj.empty() || scene.empty() ) { cout<<"Can't open the picture!\n"; return 0; } vector<KeyPoint> obj_keypoints,scene_keypoints; Mat obj_descriptors,scene_descriptors; ORB detector; //采用ORB算法提取特征点 detector.detect(obj,obj_keypoints); detector.detect(scene,scene_keypoints); detector.compute(obj,obj_keypoints,obj_descriptors); detector.compute(scene,scene_keypoints,scene_descriptors); BFMatcher matcher(NORM_HAMMING,true); //汉明距离做为相似度度量 vector<DMatch> matches; matcher.match(obj_descriptors, scene_descriptors, matches); Mat match_img; drawMatches(obj,obj_keypoints,scene,scene_keypoints,matches,match_img); imshow("滤除误匹配前",match_img); //保存匹配对序号 vector<int> queryIdxs( matches.size() ), trainIdxs( matches.size() ); for( size_t i = 0; i < matches.size(); i++ ) { queryIdxs[i] = matches[i].queryIdx; trainIdxs[i] = matches[i].trainIdx; } Mat H12; //变换矩阵 vector<Point2f> points1; KeyPoint::convert(obj_keypoints, points1, queryIdxs); vector<Point2f> points2; KeyPoint::convert(scene_keypoints, points2, trainIdxs); int ransacReprojThreshold = 5; //拒绝阈值 H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold ); vector<char> matchesMask( matches.size(), 0 ); Mat points1t; perspectiveTransform(Mat(points1), points1t, H12); for( size_t i1 = 0; i1 < points1.size(); i1++ ) //保存‘内点’ { if( norm(points2[i1] - points1t.at<Point2f>((int)i1,0)) <= ransacReprojThreshold ) //给内点做标记 { matchesMask[i1] = 1; } } Mat match_img2; //滤除‘外点’后 drawMatches(obj,obj_keypoints,scene,scene_keypoints,matches,match_img2,Scalar(0,0,255),Scalar::all(-1),matchesMask); //画出目标位置 std::vector<Point2f> obj_corners(4); obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( obj.cols, 0 ); obj_corners[2] = cvPoint( obj.cols, obj.rows ); obj_corners[3] = cvPoint( 0, obj.rows ); std::vector<Point2f> scene_corners(4); perspectiveTransform( obj_corners, scene_corners, H12); line( match_img2, scene_corners[0] + Point2f(static_cast<float>(obj.cols), 0), scene_corners[1] + Point2f(static_cast<float>(obj.cols), 0),Scalar(0,0,255),2); line( match_img2, scene_corners[1] + Point2f(static_cast<float>(obj.cols), 0), scene_corners[2] + Point2f(static_cast<float>(obj.cols), 0),Scalar(0,0,255),2); line( match_img2, scene_corners[2] + Point2f(static_cast<float>(obj.cols), 0), scene_corners[3] + Point2f(static_cast<float>(obj.cols), 0),Scalar(0,0,255),2); line( match_img2, scene_corners[3] + Point2f(static_cast<float>(obj.cols), 0), scene_corners[0] + Point2f(static_cast<float>(obj.cols), 0),Scalar(0,0,255),2); imshow("滤除误匹配后",match_img2); waitKey(0); return 0; }
3. RANSAC源码解析
(1)findHomography内部调用cvFindHomography函数
srcPoints:目标图像点集
dstPoints:场景图像点集
method: 最小中值法、RANSAC方法、最小二乘法
ransacReprojTheshold:投影误差阈值
mask:掩码
cvFindHomography( const CvMat* objectPoints, const CvMat* imagePoints, CvMat* __H, int method, double ransacReprojThreshold, CvMat* mask ) { const double confidence = 0.995; //置信度 const int maxIters = 2000; //迭代最大次数 const double defaultRANSACReprojThreshold = 3; //默认拒绝阈值 bool result = false; Ptr<CvMat> m, M, tempMask; double H[9]; CvMat matH = cvMat( 3, 3, CV_64FC1, H ); //变换矩阵 int count; CV_Assert( CV_IS_MAT(imagePoints) && CV_IS_MAT(objectPoints) ); count = MAX(imagePoints->cols, imagePoints->rows); CV_Assert( count >= 4 ); //至少有4个样本 if( ransacReprojThreshold <= 0 ) ransacReprojThreshold = defaultRANSACReprojThreshold; m = cvCreateMat( 1, count, CV_64FC2 ); //转换为齐次坐标 cvConvertPointsHomogeneous( imagePoints, m ); M = cvCreateMat( 1, count, CV_64FC2 );//转换为齐次坐标 cvConvertPointsHomogeneous( objectPoints, M ); if( mask ) { CV_Assert( CV_IS_MASK_ARR(mask) && CV_IS_MAT_CONT(mask->type) && (mask->rows == 1 || mask->cols == 1) && mask->rows*mask->cols == count ); } if( mask || count > 4 ) tempMask = cvCreateMat( 1, count, CV_8U ); if( !tempMask.empty() ) cvSet( tempMask, cvScalarAll(1.) ); CvHomographyEstimator estimator(4); if( count == 4 ) method = 0; if( method == CV_LMEDS ) //最小中值法 result = estimator.runLMeDS( M, m, &matH, tempMask, confidence, maxIters ); else if( method == CV_RANSAC ) //采用RANSAC算法 result = estimator.runRANSAC( M, m, &matH, tempMask, ransacReprojThreshold, confidence, maxIters);//(2)解析 else result = estimator.runKernel( M, m, &matH ) > 0; //最小二乘法 if( result && count > 4 ) { icvCompressPoints( (CvPoint2D64f*)M->data.ptr, tempMask->data.ptr, 1, count ); //保存内点集 count = icvCompressPoints( (CvPoint2D64f*)m->data.ptr, tempMask->data.ptr, 1, count ); M->cols = m->cols = count; if( method == CV_RANSAC ) // estimator.runKernel( M, m, &matH ); //内点集上采用最小二乘法重新估算变换矩阵 estimator.refine( M, m, &matH, 10 );// } if( result ) cvConvert( &matH, __H ); //保存变换矩阵 if( mask && tempMask ) { if( CV_ARE_SIZES_EQ(mask, tempMask) ) cvCopy( tempMask, mask ); else cvTranspose( tempMask, mask ); } return (int)result; }
(2) runRANSAC
maxIters:最大迭代次数
m1,m2 :数据样本
model:变换矩阵
reprojThreshold:投影误差阈值
confidence:置信度 0.995
bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model, CvMat* mask0, double reprojThreshold, double confidence, int maxIters ) { bool result = false; cv::Ptr<CvMat> mask = cvCloneMat(mask0); cv::Ptr<CvMat> models, err, tmask; cv::Ptr<CvMat> ms1, ms2; int iter, niters = maxIters; int count = m1->rows*m1->cols, maxGoodCount = 0; CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) ); if( count < modelPoints ) return false; models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 ); err = cvCreateMat( 1, count, CV_32FC1 );//保存每组点对应的投影误差 tmask = cvCreateMat( 1, count, CV_8UC1 ); if( count > modelPoints ) //多于4个点 { ms1 = cvCreateMat( 1, modelPoints, m1->type ); ms2 = cvCreateMat( 1, modelPoints, m2->type ); } else //等于4个点 { niters = 1; //迭代一次 ms1 = cvCloneMat(m1); //保存每次随机找到的样本点 ms2 = cvCloneMat(m2); } for( iter = 0; iter < niters; iter++ ) //不断迭代 { int i, goodCount, nmodels; if( count > modelPoints ) { //在(3)解析getSubset bool found = getSubset( m1, m2, ms1, ms2, 300 ); //随机选择4组点,且三点之间不共线,(3)解析 if( !found ) { if( iter == 0 ) return false; break; } } nmodels = runKernel( ms1, ms2, models ); //估算近似变换矩阵,返回1 if( nmodels <= 0 ) continue; for( i = 0; i < nmodels; i++ )//执行一次 { CvMat model_i; cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );//获取3×3矩阵元素 goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold ); //找出内点,(4)解析 if( goodCount > MAX(maxGoodCount, modelPoints-1) ) //当前内点集元素个数大于最优内点集元素个数 { std::swap(tmask, mask); cvCopy( &model_i, model ); //更新最优模型 maxGoodCount = goodCount; //confidence 为置信度默认0.995,modelPoints为最少所需样本数=4,niters迭代次数 niters = cvRANSACUpdateNumIters( confidence, //更新迭代次数,(5)解析 (double)(count - goodCount)/count, modelPoints, niters ); } } } if( maxGoodCount > 0 ) { if( mask != mask0 ) cvCopy( mask, mask0 ); result = true; } return result; }
(3)getSubset
ms1,ms2:保存随机找到的4个样本
maxAttempts:最大迭代次数,300
bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2, CvMat* ms1, CvMat* ms2, int maxAttempts ) { cv::AutoBuffer<int> _idx(modelPoints); //modelPoints 所需要最少的样本点个数 int* idx = _idx; int i = 0, j, k, idx_i, iters = 0; int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type); const int *m1ptr = m1->data.i, *m2ptr = m2->data.i; int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i; int count = m1->cols*m1->rows; assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) ); elemSize /= sizeof(int); //每个数据占用字节数 for(; iters < maxAttempts; iters++) { for( i = 0; i < modelPoints && iters < maxAttempts; ) { idx[i] = idx_i = cvRandInt(&rng) % count; // 随机选取1组点 for( j = 0; j < i; j++ ) // 检测是否重复选择 if( idx_i == idx[j] ) break; if( j < i ) continue; //重新选择 for( k = 0; k < elemSize; k++ ) //拷贝点数据 { ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k]; ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k]; } if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 )))//检测点之间是否共线 { iters++; //若共线,重新选择一组 continue; } i++; } if( !checkPartialSubsets && i == modelPoints && (!checkSubset( ms1, i ) || !checkSubset( ms2, i ))) continue; break; } return i == modelPoints && iters < maxAttempts; //返回找到的样本点个数 }
(4) findInliers & computerReprojError
int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* _err, CvMat* _mask, double threshold ) { int i, count = _err->rows*_err->cols, goodCount = 0; const float* err = _err->data.fl; uchar* mask = _mask->data.ptr; computeReprojError( m1, m2, model, _err ); //计算每组点的投影误差 threshold *= threshold; for( i = 0; i < count; i++ ) goodCount += mask[i] = err[i] <= threshold;//误差在限定范围内,加入‘内点集’ return goodCount; } //-------------------------------------- void CvHomographyEstimator::computeReprojError( const CvMat* m1, const CvMat* m2,const CvMat* model, CvMat* _err ) { int i, count = m1->rows*m1->cols; const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr; const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr; const double* H = model->data.db; float* err = _err->data.fl; for( i = 0; i < count; i++ ) //保存每组点的投影误差,对应上述变换公式 { double ww = 1./(H[6]*M[i].x + H[7]*M[i].y + 1.); double dx = (H[0]*M[i].x + H[1]*M[i].y + H[2])*ww - m[i].x; double dy = (H[3]*M[i].x + H[4]*M[i].y + H[5])*ww - m[i].y; err[i] = (float)(dx*dx + dy*dy); } }
(5)cvRANSACUpdateNumIters
对应上述k的计算公式
p:置信度
ep:外点比例
cvRANSACUpdateNumIters( double p, double ep, int model_points, int max_iters ) { if( model_points <= 0 ) CV_Error( CV_StsOutOfRange, "the number of model points should be positive" ); p = MAX(p, 0.); p = MIN(p, 1.); ep = MAX(ep, 0.); ep = MIN(ep, 1.); // avoid inf's & nan's double num = MAX(1. - p, DBL_MIN); //num=1-p,做分子 double denom = 1. - pow(1. - ep,model_points);//做分母 if( denom < DBL_MIN ) return 0; num = log(num); denom = log(denom); return denom >= 0 || -num >= max_iters*(-denom) ? max_iters : cvRound(num/denom); }