bzoj1477 && exgcd学习笔记

exgcd

由于忘记了exgcd,这道题就没做出来。。。

exgcd的用处是求ax+by=gcd(a,b)这样方程的解

大概是这个样子的

void ext_gcd(long long a, long long b, long long &x, long long &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
    }
    else
    {
        ext_gcd(b, a % b, y, x);
        y -= x * (a / b);
    }
}

证明大概是ax+by=gcd(a,b)

根据gcd的性质bx‘+(a%b)y‘=gcd(b,a%b)

这样就是求出了上面这个方程的解,我们要做的就是通过x‘,y‘求出x,y

怎么求呢,就是把方程化回ax+by=gcd(a,b)的形式,由于gcd(a,b)=gcd(b,a%b),所以这样的解是相同的

bx‘+(a-a/b*b)y‘=c (c=gcd(b,a%b))

ay‘+b(x‘-a/b*y‘)=c

那么就有x=y‘,y=x‘-a/b*y‘

那么我们就先exgcd(b,a%b,y,x),这样求出了x‘,y‘我们要返回x,y,由于传入了y,x,所以x=y‘已经求好了,那么就是y,现在y=x‘,x=y‘,那么y=x‘-a/b*y‘,y=y-a/b*x,然后返回就行了

边界条件是b=0,a=...,这样就是ax+by=gcd(a,b),ax+0*y=a,那么自然可以得出x=1,y=0是一组解,顺便也求出了gcd

那么这道题可以列出方程am+y-x=an (mod l),那么移一下项,得出a(m-n)=x-y (mod l),那么相当于求(m-n)*a+b*l=x-y 的最小a的解,这不就是exgcd吗?但是x-y不是gcd(m-n,l),怎么解决呢?

我们先求出一组解,(m-n)*a‘+b*l=gcd(m-n,l) 设t=gcd(m-n,l)

如果(x-y)%t != 0那么就没有解,因为如果有一组解,那么左边的式子可以整除t,右边却不能,这很明显矛盾

所以我们对于(m-n)*a‘+b*l=gcd(m-n,l) 设t=gcd(m-n,l)得出来的解,两边同乘以(x-y)/t就是原来的那个方程了,那么把a‘和b‘同时乘以(x-y)/t就得出一组a和b了,但是这不一定是最小的,于是我们要对l/t取模,至于为什么是l/t,具体是这样的

我们可以把刚才那个方程看成一个线性同余方程,那么就是ax=b (mod n)

我们求的是最小解的间隔,这个间隔能帮我们求出最小的正整数解,设这个间隔为d,那么自然a(x+d)=b (mod n)

和ax=b (mod n)减一下就是 a*d=0 (mod n),那么我们可以知道a*d是n和a的公倍数,如果想让d最小,那么a*d应该等于lcm(a,n),a*d=lcm(a,n),因为lcm(a,n)=a*n/gcd(a,n),那么就是a*d=a*n/gcd(a,n)

d=n/gcd(a,n),就是刚才那个l/t,所以这个d和l/t就是原方程解的最小周期,取模就能求出最小解

参考http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html

#include<bits/stdc++.h>
using namespace std;
long long x, y, m, n, l;
void ext_gcd(long long a, long long b, long long &x, long long &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
    }
    else
    {
        ext_gcd(b, a % b, y, x);
        y -= x * (a / b);
    }
}
int main()
{
    scanf("%lld%lld%lld%lld%lld", &x, &y, &m, &n, &l);
    if(m < n)
    {
        swap(n, m);
        swap(x, y);
    }
    long long delta_v = m - n, delta_d = ((y - x) % l + l) % l, t = __gcd(delta_v, l), a, b;
    if(delta_d % t != 0)
    {
        puts("Impossible");
        return 0;
    }
    ext_gcd(delta_v, l, a, b);
//    printf("a=%lld t=%lld delta_d=%lld\n", a, t, delta_d);
    l /= t;
    a *= delta_d / t;
    a = (a % l + l) % l;
    printf("%lld", a);
    return 0;
}

时间: 2024-10-07 05:29:43

bzoj1477 && exgcd学习笔记的相关文章

vector 学习笔记

vector 使用练习: /**************************************** * File Name: vector.cpp * Author: sky0917 * Created Time: 2014年04月27日 11:07:33 ****************************************/ #include <iostream> #include <vector> using namespace std; int main

Caliburn.Micro学习笔记(一)----引导类和命名匹配规则

Caliburn.Micro学习笔记(一)----引导类和命名匹配规则 用了几天时间看了一下开源框架Caliburn.Micro 这是他源码的地址http://caliburnmicro.codeplex.com/ 文档也写的很详细,自己在看它的文档和代码时写了一些demo和笔记,还有它实现的原理记录一下 学习Caliburn.Micro要有MEF和MVVM的基础 先说一下他的命名规则和引导类 以后我会把Caliburn.Micro的 Actions IResult,IHandle ICondu

jQuery学习笔记(一):入门

jQuery学习笔记(一):入门 一.JQuery是什么 JQuery是什么?始终是萦绕在我心中的一个问题: 借鉴网上同学们的总结,可以从以下几个方面观察. 不使用JQuery时获取DOM文本的操作如下: 1 document.getElementById('info').value = 'Hello World!'; 使用JQuery时获取DOM文本操作如下: 1 $('#info').val('Hello World!'); 嗯,可以看出,使用JQuery的优势之一是可以使代码更加简练,使开

[原创]java WEB学习笔记93:Hibernate学习之路---Hibernate 缓存介绍,缓存级别,使用二级缓存的情况,二级缓存的架构集合缓存,二级缓存的并发策略,实现步骤,集合缓存,查询缓存,时间戳缓存

本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱好者,互联网技术发烧友 微博:伊直都在0221 QQ:951226918 -----------------------------------------------------------------------------------------------------------------

Activiti 学习笔记记录(三)

上一篇:Activiti 学习笔记记录(二) 导读:上一篇学习了bpmn 画图的常用图形标记.那如何用它们组成一个可用文件呢? 我们知道 bpmn 其实是一个xml 文件

HTML&CSS基础学习笔记8-预格式文本

<pre>标签的主要作用是预格式化文本.被包围在 pre 标签中的文本通常会保留空格和换行符.而文本也会呈现为等宽字体. <pre>标签的一个常见应用就是用来表示计算机的源代码.当然你也可以在你需要在网页中预显示格式时使用它. 会使你的文本换行的标签(例如<h>.<p>)绝不能包含在 <pre> 所定义的块里.尽管有些浏览器会把段落结束标签解释为简单地换行,但是这种行为在所有浏览器上并不都是一样的. 更多学习内容,就在码芽网http://www.

java/android 设计模式学习笔记(14)---外观模式

这篇博客来介绍外观模式(Facade Pattern),外观模式也称为门面模式,它在开发过程中运用频率非常高,尤其是第三方 SDK 基本很大概率都会使用外观模式.通过一个外观类使得整个子系统只有一个统一的高层的接口,这样能够降低用户的使用成本,也对用户屏蔽了很多实现细节.当然,在我们的开发过程中,外观模式也是我们封装 API 的常用手段,例如网络模块.ImageLoader 模块等.其实我们在开发过程中可能已经使用过很多次外观模式,只是没有从理论层面去了解它. 转载请注明出处:http://bl

[原创]java WEB学习笔记48:其他的Servlet 监听器:域对象中属性的变更的事件监听器 (3 个),感知 Session 绑定的事件监听器(2个)

本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱好者,互联网技术发烧友 微博:伊直都在0221 QQ:951226918 ---------------------------------

java/android 设计模式学习笔记(10)---建造者模式

这篇博客我们来介绍一下建造者模式(Builder Pattern),建造者模式又被称为生成器模式,是创造性模式之一,与工厂方法模式和抽象工厂模式不同,后两者的目的是为了实现多态性,而 Builder 模式的目的则是为了将对象的构建与展示分离.Builder 模式是一步一步创建一个复杂对象的创建型模式,它允许用户在不知道内部构建细节的情况下,可以更精细地控制对象的构造流程.一个复杂的对象有大量的组成部分,比如汽车它有车轮.方向盘.发动机.以及各种各样的小零件,要将这些部件装配成一辆汽车,这个装配过