算法#13--红黑树完整代码Java实现

红黑树

定义

红黑树(英语:Red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。

红黑树的另一种定义是含有红黑链接并满足下列条件的二叉查找树:

  • 红链接均为左链接;
  • 没有任何一个结点同时和两条红链接相连;
  • 该树是完美黑色平衡的,即任意空链接到根结点的路径上的黑链接数量相同。

满足这样定义的红黑树和相应的2-3树是一一对应的。

旋转

旋转又分为左旋和右旋。通常左旋操作用于将一个向右倾斜的红色链接旋转为向左链接。对比操作前后,可以看出,该操作实际上是将红线链接的两个节点中的一个较大的节点移动到根节点上。

左旋操作如下图:

右旋旋操作如下图:

即:

颜色反转

当出现一个临时的4-node的时候,即一个节点的两个子节点均为红色,如下图。这其实是个A,E,S 4-node连接,我们需要将E提升至父节点,操作方法很简单,就是把E对子节点的连线设置为黑色,自己的颜色设置为红色。

复杂度

红黑树的平均高度大约为lgN。

下图是红黑树在各种情况下的时间复杂度,可以看出红黑树是2-3查找树的一种实现,他能保证最坏情况下仍然具有对数的时间复杂度。

Java代码

点击下载代码


import java.util.NoSuchElementException;
import java.util.Scanner;

public class RedBlackBST<Key extends Comparable<Key>, Value> {
    private static final boolean RED = true;
    private static final boolean BLACK = false;

    private Node root; //root of the BST

    private class Node {
        private Key key;            //key
        private Value val;          //associated data
        private Node left, right;   //links to left and right subtrees
        private boolean color;      //color of parent link
        private int size;           //subtree count

        public Node(Key key, Value val, boolean color, int size) {
            this.key = key;
            this.val = val;
            this.color = color;
            this.size = size;
        }
    }

    //is node x red?
    private boolean isRed(Node x) {
        if(x == null) {
            return false;
        }
        return x.color == RED;
    }

    //number of node in subtree rooted at x; 0 if x is null
    private int size(Node x) {
        if(x == null) {
            return 0;
        }
        return x.size;
    }   

    /**
     * return the number of key-value pairs in this symbol table
     * @return the number of key-value pairs in this symbol table
     */
    public int size() {
        return size(root);
    }

    /**
     * is this symbol table empty?
     * @return true if this symbol table is empty and false otherwise
     */
    public boolean isEmpty() {
        return root == null;
    }

    /**
     * return the value associated with the given key
     * @param key the key
     * @return the value associated with the given key if the key is in the symbol table, and null if it is not.
     */
    public Value get(Key key) {
        if(key == null) {
            throw new NullPointerException("argument to get() is null");
        }
        return get(root, key);
    }

    //value associated with the given key in subtree rooted at x; null if no such key
    private Value get(Node x, Key key) {
        while(x != null) {
            int cmp = key.compareTo(x.key);
            if(cmp < 0) {
                x = x.left;
            }
            else if(cmp > 0) {
                x = x.right;
            }
            else {
                return x.val;
            }
        }
        return null;
    }

    /**
     * does this symbol table contain the given key?
     * @param key the key
     * @return true if this symbol table contains key and false otherwise
     */
    public boolean contains(Key key) {
        return get(key) != null;
    }

   /***************************************************************************
    *  Red-black tree insertion.
    ***************************************************************************/

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting the old
     * value with the new value if the symbol table already contains the specified key.
     * Deletes the specified key (and its associated value) from this symbol table
     * if the specified value is null.
     *
     * @param key the key
     * @param val the value
     * @throws NullPointerException if key is null
     */
    public void put(Key key, Value val) {
        if (key == null) {
            throw new NullPointerException("first argument to put() is null");
        }
        if (val == null) {
            delete(key);
            return;
        }
        root = put(root, key, val);
        root.color = BLACK;
    }

    // insert the key-value pair in the subtree rooted at h
    private Node put(Node h, Key key, Value val) {
        if(h == null) {
            return new Node(key, val, RED, 1);
        }

        int cmp = key.compareTo(h.key);
        if(cmp < 0) {
            h.left = put(h.left, key, val);
        }
        else if(cmp > 0) {
            h.right = put(h.right, key, val);
        }
        else {
            h.val = val;
        }

        if(isRed(h.right) && !isRed(h.left)) {
            h = rotateLeft(h);
        }
        if(isRed(h.left) && isRed(h.left.left)) {
            h = rotateRight(h);
        }
        if(isRed(h.left) && isRed(h.right)) {
            flipColors(h);
        }

        h.size = size(h.left) + size(h.right) + 1;
        return h;
    }

    /***************************************************************************
    *  Red-black tree deletion.
    ***************************************************************************/

    /**
     * Removes the smallest key and associated value from the symbol table.
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMin() {
        if (isEmpty()) {
            throw new NoSuchElementException("BST underflow");
        }

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = deleteMin(root);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the minimum key rooted at h
    // delete the key-value pair with the minimum key rooted at h
    private Node deleteMin(Node h) {
        if (h.left == null){
            return null;
        }

        if (!isRed(h.left) && !isRed(h.left.left)) {
            h = moveRedLeft(h);
        }

        h.left = deleteMin(h.left);
        return balance(h);
    }

    /**
     * Removes the largest key and associated value from the symbol table.
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMax() {
        if (isEmpty()) {
            throw new NoSuchElementException("BST underflow");
        }

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = deleteMax(root);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the maximum key rooted at h
    // delete the key-value pair with the maximum key rooted at h
    private Node deleteMax(Node h) {
            if (isRed(h.left))
                h = rotateRight(h);

            if (h.right == null)
                return null;

            if (!isRed(h.right) && !isRed(h.right.left))
                h = moveRedRight(h);

            h.right = deleteMax(h.right);

            return balance(h);
        }

    /**
     * remove the specified key and its associated value from this symbol table
     * (if the key is in this symbol table).
     *
     * @param  key the key
     * @throws NullPointerException if key is null
     */
    public void delete(Key key) {
        if (key == null) {
            throw new NullPointerException("argument to delete() is null");
        }
        if (!contains(key)) {
            return;
        }
        //if both children of root are black, set root to red
        if(!isRed(root.left) && !isRed(root.right)) {
            root.color = RED;
        }
        root = delete(root, key);
        if(!isEmpty()) {
            root.color = BLACK;
        }
    }

    // delete the key-value pair with the given key rooted at h
    // delete the key-value pair with the given key rooted at h
    private Node delete(Node h, Key key) {
        if(key.compareTo(h.key) < 0) {
            if(!isRed(h.left) && !isRed(h.left.left)) {
                h = moveRedLeft(h);
            }
            h.left = delete(h.left, key);
        }
        else {
            if(isRed(h.left)) {
                h = rotateRight(h);
            }
            if (key.compareTo(h.key) == 0 && (h.right == null)) {
                return null;
            }
            if (!isRed(h.right) && !isRed(h.right.left)) {
                h = moveRedRight(h);
            }
            if (key.compareTo(h.key) == 0) {
                Node x = min(h.right);
                h.key = x.key;
                h.val = x.val;
                h.right = deleteMin(h.right);
            }
            else {
                h.right = delete(h.right, key);
            }
        }
        return balance(h);
    }

    /***************************************************************************
    *  Red-black tree helper functions.
    ***************************************************************************/

    // make a left-leaning link lean to the right

    // make a left-leaning link lean to the right
    private Node rotateRight(Node h) {
        // assert (h != null) && isRed(h.left);
        Node x = h.left;
        h.left = x.right;
        x.right = h;
        x.color = x.right.color;
        x.right.color = RED;
        x.size = h.size;
        h.size = size(h.left) + size(h.right) + 1;
        return x;
    }

    // make a right-leaning link lean to the left
    // make a right-leaning link lean to the left
    private Node rotateLeft(Node h) {
        // assert (h != null) && isRed(h.right);
        Node x = h.right;
        h.right = x.left;
        x.left = h;
        x.color = x.left.color;
        x.left.color = RED;
        x.size = h.size;
        h.size = size(h.left) + size(h.right) + 1;
        return x;
    }

    // flip the colors of a node and its two children
    // flip the colors of a node and its two children
    private void flipColors(Node h) {
        // h must have opposite color of its two children
        // assert (h != null) && (h.left != null) && (h.right != null);
        // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))
        //    || (isRed(h)  && !isRed(h.left) && !isRed(h.right));
        h.color = !h.color;
        h.left.color = !h.left.color;
        h.right.color = !h.right.color;
    }

    // Assuming that h is red and both h.left and h.left.left
    // are black, make h.left or one of its children red.
    // Assuming that h is red and both h.left and h.left.left
    // are black, make h.left or one of its children red.
    private Node moveRedLeft(Node h) {
        // assert (h != null);
        // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);

        flipColors(h);
        if (isRed(h.right.left)) {
            h.right = rotateRight(h.right);
            h = rotateLeft(h);
            flipColors(h);
        }
        return h;
    }

    // Assuming that h is red and both h.right and h.right.left
    // are black, make h.right or one of its children red.
    // Assuming that h is red and both h.right and h.right.left
    // are black, make h.right or one of its children red.
    private Node moveRedRight(Node h) {
        // assert (h != null);
        // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
        flipColors(h);
        if (isRed(h.left.left)) {
            h = rotateRight(h);
            flipColors(h);
        }
        return h;
    }

    // restore red-black tree invariant
    // restore red-black tree invariant
    private Node balance(Node h) {
        // assert (h != null);
        if (isRed(h.right)) {
            h = rotateLeft(h);
        }
        if (isRed(h.left) && isRed(h.left.left)) {
            h = rotateRight(h);
        }
        if (isRed(h.left) && isRed(h.right)) {
            flipColors(h);
        }

        h.size = size(h.left) + size(h.right) + 1;
        return h;
    }

    /***************************************************************************
     *  Utility functions.
     ***************************************************************************/

     /**
      * Returns the height of the BST (for debugging).
      * @return the height of the BST (a 1-node tree has height 0)
      */
     public int height() {
         return height(root);
     }
     private int height(Node x) {
         if (x == null) {
             return -1;
         }
         return 1 + Math.max(height(x.left), height(x.right));
     }

    /***************************************************************************
     *  Ordered symbol table methods.
     ***************************************************************************/

     /**
      * Returns the smallest key in the symbol table.
      * @return the smallest key in the symbol table
      * @throws NoSuchElementException if the symbol table is empty
      */
     public Key min() {
         if (isEmpty()) {
             throw new NoSuchElementException("called min() with empty symbol table");
         }
         return min(root).key;
     } 

     // the smallest key in subtree rooted at x; null if no such key
     private Node min(Node x) {
         // assert x != null;
         if (x.left == null) {
             return x;
         }
         else {
             return min(x.left);
         }
     } 

     /**
      * Returns the largest key in the symbol table.
      * @return the largest key in the symbol table
      * @throws NoSuchElementException if the symbol table is empty
      */
     public Key max() {
         if (isEmpty()) {
             throw new NoSuchElementException("called max() with empty symbol table");
         }
         return max(root).key;
     } 

     // the largest key in the subtree rooted at x; null if no such key
     private Node max(Node x) {
         // assert x != null;
         if (x.right == null) {
             return x;
         }
         else {
             return max(x.right);
         }
     } 

     /**
      * Returns the largest key in the symbol table less than or equal to key.
      * @param key the key
      * @return the largest key in the symbol table less than or equal to key
      * @throws NoSuchElementException if there is no such key
      * @throws NullPointerException if key is null
      */
     public Key floor(Key key) {
         if (key == null) {
             throw new NullPointerException("argument to floor() is null");
         }
         if (isEmpty()) {
             throw new NoSuchElementException("called floor() with empty symbol table");
         }
         Node x = floor(root, key);
         if (x == null) {
             return null;
         }
         else {
             return x.key;
         }
     }    

     // the largest key in the subtree rooted at x less than or equal to the given key
     private Node floor(Node x, Key key) {
         if (x == null) {
             return null;
         }
         int cmp = key.compareTo(x.key);
         if (cmp == 0) {
             return x;
         }
         if (cmp < 0)  {
             return floor(x.left, key);
         }
         Node t = floor(x.right, key);
         if (t != null) {
             return t;
         }
         else {
             return x;
         }
     }

     /**
      * Returns the smallest key in the symbol table greater than or equal to key.
      * @param key the key
      * @return the smallest key in the symbol table greater than or equal to key
      * @throws NoSuchElementException if there is no such key
      * @throws NullPointerException if key is null
      */
     public Key ceiling(Key key) {
         if (key == null) {
             throw new NullPointerException("argument to ceiling() is null");
         }
         if (isEmpty()) {
             throw new NoSuchElementException("called ceiling() with empty symbol table");
         }
         Node x = ceiling(root, key);
         if (x == null) {
             return null;
         }
         else {
             return x.key;
         }
     }

     // the smallest key in the subtree rooted at x greater than or equal to the given key
     private Node ceiling(Node x, Key key) {
         if (x == null) {
             return null;
         }
         int cmp = key.compareTo(x.key);
         if (cmp == 0) {
             return x;
         }
         if (cmp > 0) {
             return ceiling(x.right, key);
         }
         Node t = ceiling(x.left, key);
         if (t != null) {
             return t;
         }
         else {
             return x;
         }
     }

     /**
      * Return the kth smallest key in the symbol table.
      * @param k the order statistic
      * @return the kth smallest key in the symbol table
      * @throws IllegalArgumentException unless k is between 0 and
      *     <em>N</em> &minus; 1
      */
     public Key select(int k) {
         if (k < 0 || k >= size()) {
             throw new IllegalArgumentException();
         }
         Node x = select(root, k);
         return x.key;
     }

     // the key of rank k in the subtree rooted at x
     private Node select(Node x, int k) {
         // assert x != null;
         // assert k >= 0 && k < size(x);
         int t = size(x.left);
         if      (t > k) {
             return select(x.left,  k);
         }
         else if (t < k) {
             return select(x.right, k-t-1);
         }
         else {
             return x;
         }
     } 

     /**
      * Return the number of keys in the symbol table strictly less than key.
      * @param key the key
      * @return the number of keys in the symbol table strictly less than key
      * @throws NullPointerException if key is null
      */
     public int rank(Key key) {
         if (key == null) {
             throw new NullPointerException("argument to rank() is null");
         }
         return rank(key, root);
     } 

     // number of keys less than key in the subtree rooted at x
     private int rank(Key key, Node x) {
         if (x == null) {
             return 0;
         }
         int cmp = key.compareTo(x.key);
         if      (cmp < 0) {
             return rank(key, x.left);
         }
         else if (cmp > 0) {
             return 1 + size(x.left) + rank(key, x.right);
         }
         else {
             return size(x.left);
         }
     } 

    /***************************************************************************
     *  Range count and range search.
     ***************************************************************************/

     /**
      * Returns all keys in the symbol table as an Iterable.
      * To iterate over all of the keys in the symbol table named st,
      * use the foreach notation: for (Key key : st.keys()).
      * @return all keys in the symbol table as an Iterable
      */
     public Iterable<Key> keys() {
         if (isEmpty()) {
             return new Queue<Key>();
         }
         return keys(min(), max());
     }

     /**
      * Returns all keys in the symbol table in the given range,
      * as an Iterable.
      * @return all keys in the symbol table between lo
      *    (inclusive) and hi (exclusive) as an Iterable
      * @throws NullPointerException if either lo or hi
      *    is null
      */
     public Iterable<Key> keys(Key lo, Key hi) {
         if (lo == null) {
             throw new NullPointerException("first argument to keys() is null");
         }
         if (hi == null) {
             throw new NullPointerException("second argument to keys() is null");
         }

         Queue<Key> queue = new Queue<Key>();
         // if (isEmpty() || lo.compareTo(hi) > 0) return queue;
         keys(root, queue, lo, hi);
         return queue;
     } 

     // add the keys between lo and hi in the subtree rooted at x
     // to the queue
     private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
         if (x == null) {
             return;
         }
         int cmplo = lo.compareTo(x.key);
         int cmphi = hi.compareTo(x.key);
         if (cmplo < 0) {
             keys(x.left, queue, lo, hi);
         }
         if (cmplo <= 0 && cmphi >= 0) {
             queue.enqueue(x.key);
         }
         if (cmphi > 0) {
             keys(x.right, queue, lo, hi);
         }
     } 

     /**
      * Returns the number of keys in the symbol table in the given range.
      * @return the number of keys in the symbol table between lo
      *    (inclusive) and hi (exclusive)
      * @throws NullPointerException if either lo or hi
      *    is null
      */
     public int size(Key lo, Key hi) {
         if (lo == null) {
             throw new NullPointerException("first argument to size() is null");
         }
         if (hi == null) {
             throw new NullPointerException("second argument to size() is null");
         }

         if (lo.compareTo(hi) > 0) {
             return 0;
         }
         if (contains(hi)) {
             return rank(hi) - rank(lo) + 1;
         }
         else {
             return rank(hi) - rank(lo);
         }
     }

    /***************************************************************************
     *  Check integrity of red-black tree data structure.
     ***************************************************************************/
     private boolean check() {
         if (!isBST())            System.out.println("Not in symmetric order");
         if (!isSizeConsistent()) System.out.println("Subtree counts not consistent");
         if (!isRankConsistent()) System.out.println("Ranks not consistent");
         if (!is23())             System.out.println("Not a 2-3 tree");
         if (!isBalanced())       System.out.println("Not balanced");
         return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
     }

     // does this binary tree satisfy symmetric order?
     // Note: this test also ensures that data structure is a binary tree since order is strict
     private boolean isBST() {
         return isBST(root, null, null);
     }

     // is the tree rooted at x a BST with all keys strictly between min and max
     // (if min or max is null, treat as empty constraint)
     // Credit: Bob Dondero‘s elegant solution
     private boolean isBST(Node x, Key min, Key max) {
         if (x == null) {
             return true;
         }
         if (min != null && x.key.compareTo(min) <= 0) {
             return false;
         }
         if (max != null && x.key.compareTo(max) >= 0) {
             return false;
         }
         return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
     } 

     // are the size fields correct?
     private boolean isSizeConsistent() {
         return isSizeConsistent(root);
     }

     private boolean isSizeConsistent(Node x) {
         if (x == null) {
             return true;
         }
         if (x.size != size(x.left) + size(x.right) + 1) {
             return false;
         }
         return isSizeConsistent(x.left) && isSizeConsistent(x.right);
     } 

     // check that ranks are consistent
     private boolean isRankConsistent() {
         for (int i = 0; i < size(); i++) {
             if (i != rank(select(i))) {
                 return false;
             }
         }
         for (Key key : keys()) {
             if (key.compareTo(select(rank(key))) != 0) {
                 return false;
             }
         }
         return true;
     }

     // Does the tree have no red right links, and at most one (left)
     // red links in a row on any path?
     private boolean is23() {
         return is23(root);
     }

     private boolean is23(Node x) {
         if (x == null) {
             return true;
         }
         if (isRed(x.right)) {
             return false;
         }
         if (x != root && isRed(x) && isRed(x.left)){
             return false;
         }
         return is23(x.left) && is23(x.right);
     } 

     // do all paths from root to leaf have same number of black edges?
     private boolean isBalanced() {
         int black = 0;     // number of black links on path from root to min
         Node x = root;
         while (x != null) {
             if (!isRed(x)) black++;
             x = x.left;
         }
         return isBalanced(root, black);
     }

     // does every path from the root to a leaf have the given number of black links?
     private boolean isBalanced(Node x, int black) {
         if (x == null) {
             return black == 0;
         }
         if (!isRed(x)) {
             black--;
         }
         return isBalanced(x.left, black) && isBalanced(x.right, black);
     } 

     /**
      * Unit tests the RedBlackBST data type.
      */
     public static void main(String[] args) {
         RedBlackBST<String, Integer> st = new RedBlackBST<String, Integer>();
         String data = "a b c d e f g h m n o p";
         Scanner sc = new Scanner(data);
         int i = 0;
         while (sc.hasNext()) {
            String key = sc.next();
            st.put(key, i);
            i++;
         }
         sc.close();     

         for (String s : st.keys())
             System.out.println(s + " " + st.get(s));
         System.out.println();

         boolean result = st.check();
         System.out.println("check: " + result);
     }
 }    

输出:

a 0
b 1
c 2
d 3
e 4
f 5
g 6
h 7
m 8
n 9
o 10
p 11

check: true
时间: 2024-10-12 18:33:00

算法#13--红黑树完整代码Java实现的相关文章

算法之红黑树

红黑树(一) 原理和算法详细介 1 R-B Tree简介 R-B Tree,全称是Red-Black Tree,又称为"红黑树",它一种特殊的二叉查找树.红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black). 红黑树的特性:(1)每个节点或者是黑色,或者是红色.(2)根节点是黑色.(3)每个叶子节点(NIL)是黑色. [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!](4)如果一个节点是红色的,则它的子节点必须是黑色的.(5)从一个节点到该节点

算法:红黑树

算法:红黑树 红黑树介绍 红黑树(英语:Red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组.它是在1972年由鲁道夫·贝尔发明的,他称之为"对称二叉B树",它现代的名字是在Leo J. Guibas和Robert Sedgewick于1978年写的一篇论文中获得的. 红黑树本质上是一种二叉查找树,但它在二叉查找树的基础上额外添加了一个标记(颜色),同时具有一定的规则.这些规则使红黑树保证了一种平衡,插入.删除.查找的最坏时

Java数据结构和算法(八)--红黑树与2-3树

红黑树规则: 1.根节点与叶节点都是黑色节点 2.每个红色节点的两个子节点都是黑色节点,反之,不做要求,换句话说就是不能有连续两个红色节点 3.从根节点到所有叶子节点上的黑色节点数量是相同的 一般对红黑树的讲述都是先给出这样的定义,这样想对不太容易理解的,而在算法4一书中,直接跳过这些规则,而讲述了红黑树与2-3树的等价性 如果我们先了解2-3树,理解了红黑树与2-3树之间的关系,回过头就会发现红黑树不难 2-3树: 2-3树满足二分搜索树的基本性质,但是不是二叉树 2-3树节点可以存放一个元素

算法导论 红黑树 学习 旋转(二)

学习算法 还是建议看看算法导论 算法导论第三版 如果不看数学推导 仅看伪代码 难度还是适中 本系列只是记录我的学习心得 和伪代码转化代码的过程 深入学习 还是建议大家看看算法书籍 教程更加系统. 本文参考算法导论第13章节 红黑树 代码由本人写成 转载请标明出处 红黑树是一个带颜色的二叉树 有以下5点性能 1 每个节点或者红色或者黑色 2 根节点黑色 3 每个叶子节点(nil)为黑色 4 如果一个节点是红色的则它的两个子节点都是黑色 5 每个节点 该节点到子孙节点的路径上 黑色节点数目相同 如图

算法导论 红黑树 学习 删除(四)

版权声明:本文为博主原创文章,未经博主允许不得转载.技术博客 http://blog.csdn.net/stecdeng 技术交流群 群号码:324164944 欢迎c c++ windows驱动爱好者 服务器程序员沟通交流 学习算法 还是建议看看算法导论 算法导论第三版 如果不看数学推导 仅看伪代码 难度还是适中 本系列只是记录我的学习心得 和伪代码转化代码的过程 深入学习 还是建议大家看看算法书籍 教程更加系统. 本文参考算法导论第13章节 红黑树 代码由本人写成 转载请标明出处 先看看不做

第十四章 红黑树——C++代码实现

红黑树的介绍 红黑树(Red-Black Tree,简称R-B Tree),它一种特殊的二叉查找树.红黑树是特殊的二叉查找树,意味着它满足二叉查找树的特征:任意一个节点所包含的键值,大于等于左孩子的键值,小于等于右孩子的键值.除了具备该特性之外,红黑树还包括许多额外的信息. 红黑树的每个节点上都有存储位表示节点的颜色,颜色是红(Red)或黑(Black).红黑树的特性:(1) 每个节点或者是黑色,或者是红色.(2) 根节点是黑色.(3) 每个叶子节点是黑色. [注意:这里叶子节点,是指为空的叶子

红黑树 - C++代码实现

红黑树的介绍 红黑树(Red-Black Tree,简称R-B Tree),它一种特殊的二叉查找树.红黑树是特殊的二叉查找树,意味着它满足二叉查找树的特征:任意一个节点所包含的键值,大于等于左孩子的键值,小于等于右孩子的键值.除了具备该特性之外,红黑树还包括许多额外的信息. 红黑树的每个节点上都有存储位表示节点的颜色,颜色是红(Red)或黑(Black).红黑树的特性:(1) 每个节点或者是黑色,或者是红色.(2) 根节点是黑色.(3) 每个叶子节点是黑色. [注意:这里叶子节点,是指为空的叶子

红黑树的代码实现

红黑树满足一下规则 1. 每个节点不是红色就是黑色 2.根节点为黑色 3.如果节点为红,其子节点必须为黑 4.任一节点至nil的任何路径,所包含的黑节点数必须相同. 5.叶子节点nil为黑色 当破坏了平衡时,在调整的时候需要用到左旋和右旋 左旋: 右旋: 代码实现: 1 void rb_tree::__rb_tree_rotate_left(link_type x) { 2 link_type y = x->right; 3 x->right = y->left; 4 if(y->

算法导论-------------红黑树

红黑树是一种二叉查找树,但在每个结点上增加了一个存储位表示结点的颜色,可以是RED或者BLACK.通过对任何一条从根到叶子的路径上各个着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的.本章主要介绍了红黑树的性质.左右旋转.插入和删除.重点分析了在红黑树中插入和删除元素的过程,分情况进行详细讨论.一棵高度为h的二叉查找树可以实现任何一种基本的动态集合操作,如SEARCH.PREDECESSOR.SUCCESSOR.MIMMUM.MAXMUM.INSERT.DELETE等