x86中的页表结构和页表项格式

一、页表结构

分页转换功能由驻留在内存中的表来描述,该表称为页表(page table),存放在物理地址空间中。页表可看做简单的220个物理地址数组。线性到物理地址的映射功能可以简单地看做进行数组查找。线性地址的高20位构成这个数组的索引值,用于选择对应页面的物理(基)地址。线性地址的低12位给出了页面中的偏移量,加上页面的基地址最终形成对应的物理地址。由于页面基地址对齐在4K边界上,因此页面基地址的低12位肯定是0。这意味着高20位的页面基地址和12位偏移量连接组合在一起就能得到对应的物理地址。

页表中每个页表项的大小为32位。由于只需要其中的20位来存放页面的物理基地址,因此剩下的12位可用于存放诸如页面是否存在等的属性信息。如果线性地址索引的页表项被标注为存在的,则表示该项有效,我们可以从中取得页面的物理地址。如果页表项中信息表明(说明、指明)页不存在,那么当访问对应物理页面时就会产生一个异常。

1.两级页表结构

页表含有220(1M)个表项,而每项占用4B。如果作为一个表来存放的话,它们最多将占用4MB的内存。因此为了减少内存占用量,80x86使用了两级表。由此,高20位线性地址到物理地址的转换也被分成两步来进行,每步使用(转换)其中的10bit。

第一级表称为页目录(page directory)。它被存放在1页4K页面中,具有210(1K)个4B长度的表项。这些表项指向对应的二级表。线性地址的最高10位(位31~22)用作一级表(页目录)中的索引值来选择210个二级表之一。

第二级表称为页表(page table),它的长度也是1个页面,最多含有1K个4B的表项。每个4B表项含有相关页面的20位物理基地址。二级页表使用线性地址中间10位(位21~12)作为表项索引值,以获取含有页面20位物理基地址的表项。该20位页面物理基地址和线性地址中的低12位(页内偏移)组合在一起就得到了分页转换过程的输出值,即对应的最终物理地址。

图4-17给出了二级表的查找过程。其中CR3寄存器指定页目录表的基地址。线性地址的高10位用于索引这个页目录表,以获得指向相关第二级页表的指针。线性地址中间10位用于索引二级页表,以获得物理地址的高20位。线性地址的低12位直接作为物理地址低12位,从而组成一个完整的32位物理地址。

 
(点击查看大图)图4-17  线性地址和物理地址之间的变换

2.不存在的页表

使用二级表结构,并没有解决需要使用4MB内存来存放页表的问题。实际上,我们把问题搞得有些复杂了。因为我们需要另增一个页面来存放目录表。然而,二级表结构允许页表被分散在内存各个页面中,而不需要保存在连续的4MB内存块中。另外,并不需要为不存在的或线性地址空间未使用部分分配二级页表。虽然目录表页面必须总是存在于物理内存中,但是二级页表可以在需要时再分配。这使得页表结构的大小对应于实际使用的线性地址空间大小。

页目录表中每个表项也有一个存在(present)属性,类似于页表中的表项。页目录表项中的存在属性指明对应的二级页表是否存在。如果目录表项指明对应的二级页表存在,那么通过访问二级表,表查找过程第2步将同如上描述继续下去。如果存在位表明对应的二级表不存在,那么处理器就会产生一个异常来通知操作系统。页目录表项中的存在属性使得操作系统可以根据实际使用的线性地址范围来分配二级页表页面。

目录表项中的存在位还可以用于在虚拟内存中存放二级页表。这意味着在任何时候只有部分二级页表需要存放在物理内存中,而其余的可保存在磁盘上。处于物理内存中页表对应的页目录项将被标注为存在,以表明可用它们进行分页转换。处于磁盘上的页表对应的页目录项将被标注为不存在。由于二级页表不存在而引发的异常会通知操作系统把缺少的页表从磁盘上加载进物理内存。把页表存储在虚拟内存中减少了保存分页转换表所需要的物理内存量。

二、页表项格式

页目录和页表的表项格式如图4-18所示。其中位31~12含有物理地址的高20位,用于定位物理地址空间中一个页面(也称为页帧)的物理基地址。表项的低12位含有页属性信息。前文已经讨论过存在属性,这里简要说明其余属性的功能和用途。

 
(点击查看大图)图4-18  页目录和页表的表项格式

P--位0是存在(Present)标志,用于指明表项对地址转换是否有效。P=1表示有效;P=0表示无效。在页转换过程中,如果说涉及的页目录或页表的表项无效,则会导致一个异常。如果P=0,那么除表示表项无效外,其余位可供程序自由使用,如图4-18b所示。例如,操作系统可以使用这些位来保存已存储在磁盘上的页面的序号。

R/W--位1是读/写(Read/Write)标志。如果等于1,表示页面可以被读、写或执行。如果为0,表示页面只读或可执行。当处理器运行在超级用户特权级(级别0、1或2)时,则R/W位不起作用。页目录项中的R/W位对其所映射的所有页面起作用。

U/S--位2是用户/超级用户(User/Supervisor)标志。如果为1,那么运行在任何特权级上的程序都可以访问该页面。如果为0,那么页面只能被运行在超级用户特权级(0、1或2)上的程序访问。页目录项中的U/S位对其所映射的所有页面起作用。

A--位5是已访问(Accessed)标志。当处理器访问页表项映射的页面时,页表表项的这个标志就会被置为1。当处理器访问页目录表项映射的任何页面时,页目录表项的这个标志就会被置为1。处理器只负责设置该标志,操作系统可通过定期地复位该标志来统计页面的使用情况。

D--位6是页面已被修改(Dirty)标志。当处理器对一个页面执行写操作时,就会设置对应页表表项的D标志。处理器并不会修改页目录项中的D标志。

AVL--该字段保留专供程序使用。处理器不会修改这几位,以后的升级处理器也不会。

时间: 2024-10-16 16:56:23

x86中的页表结构和页表项格式的相关文章

Linux C中内联汇编的语法格式及使用方法(Inline Assembly in Linux C)

在阅读Linux内核源码或对代码做性能优化时,经常会有在C语言中嵌入一段汇编代码的需求,这种嵌入汇编在CS术语上叫做inline assembly.本文的笔记试图说明Inline Assembly的基本语法规则和用法(建议英文阅读能力较强的同学直接阅读本文参考资料中推荐的技术文章 ^_^). 注意:由于gcc采用AT&T风格的汇编语法(与Intel Syntax相对应,二者的区别参见这里),因此,本文涉及到的汇编代码均以AT&T Syntax为准. 1. 基本语法规则 内联汇编(或称嵌入汇

C中多变的结构体 struct typedef

 这几天看代码,看到几种类型的结构体,结构声明如下: struct    book{ string name; int price; int num; }; 此种结构定义结构变量的格式如下: struct    book      student; struct      book{ string name; int price; int num; }student; 此种形式代表声明结构的过程和定义结构变量的过程被合并成一步 typedef    struct  (book){   //b

C语言中的分支结构

<A href="http://www.goodprogrammer.org/" target="blank">ios培训</A>------我的c语言笔记,期待与您交流! 现实生活中我们经常需要根据不同的条件做出不同的选择.程序设计中也需要根据条件来选择不同的程序进行处理,这称之为分支结构. C语言中控制分支结构的主要是if语句和switch语句.首先说说if语句: if语句的单分支结构形式:if(条件 e)  { 语句 s; }.当条件e

JS中的运算符&amp;JS中的分支结构

一.JS中的运算符 1.算术运算(单目运算符) + 加.- 减.* 乘./ 除.% 取余.++ 自增.-- 自减 >>> +:有两种作用,连接字符串/加法运算.当+两边全为数字时,进行加法运算: 当+两边有任意一边为字符串时,起连接字符串的作用,连接之后的结果为字符串 除+外,其余符号运算时,会先尝试将左右变量用Number函数转为数字 >>> /: 结果会保留小数点 >>> ++: 自增运算符,将变量在原有基础上+1: --: 自减运算符,将变量在原

第二十一篇:Linux 操作系统中的进程结构

前言 在 Linux 中,一个正在执行的程序往往由各种各样的进程组成,这些进程除了父子关系,还有其他的关系.依赖于这些关系,所有进程构成一个整体,给用户提供完整的服务( 考虑到了终端,即与用户的交互 ). 本文将详细描述 Linux 中的进程结构. 进程结构 上图所描述的是为了给用户提供一次完整服务( 需要处理用户IO等 )所涉及到的一个完整的进程结构,几个部分解释如下: 1. 控制进程 建立与终端连接的进程称为控制进程( 属于后台进程组之一 ) 2. 前台进程组 控制终端( 处理如Ctrl+C

OpenCV中图像的结构和区别

在OpenCV中,现在有很多种结构类型可以用来表示图像,它们之间有区别又有联系,现在记录一下它们之间的区别和相似之处,以便后面查看. 其中类型有: 1. Iplimage,2. Mat,3.CvMat, 4.CVArr: 其中: 1. IplImage: 较老版本的图像存储类型,在2.0之前使用: 2. CvArr: 也是较老的一种存储结构,是一种抽象的基类. 3. CvMat: 矩阵结构. 4. Mat:  新版本中使用的,推荐使用,是一个图像容器,基本上讲 Mat 是一个类,由两个数据部分组

JavaScript中的分支结构

说到JavaScript中的分支结构,我们就不得不提到流程控制这个词,我们所有的程序都是由数据和算法组成的.程序=数据+算法通常我们所说的算法都可以通过"顺序","分支","循环"三种结构来组合完成. 在ECMA中规定了一些语句(也称为流程控制语句,分支结构语句),从本质上来说,这些语句定义了ECMAScript中的主要语法,语句通常使用一个或者多个关键字来完成给定任务. 1.1 if 语句 if 语句 - 只有当指定条件为 true 时,使用该

深入解析 ObjC 中方法的结构

因为 ObjC 的 runtime 只能在 Mac OS 下才能编译,所以文章中的代码都是在 Mac OS,也就是 x86_64 架构下运行的,对于在 arm64 中运行的代码会特别说明. 在上一篇分析 isa 的文章从 NSObject 的初始化了解 isa中曾经说到过实例方法被调用时,会通过其持有 isa 指针寻找对应的类,然后在其中的 class_data_bits_t 中查找对应的方法,在这一篇文章中会介绍方法在 ObjC 中是如何存储方法的. 这篇文章的首先会根据 ObjC 源代码来分

Pjlib中的链表结构

Pjlib的链表结构跟常见的链表结构有所区别,如下图所示: ? ? ? ? ? ? 图1:一般链表结构 ? ? ? ? ? 图2:pjlib中的链表结构 可以看到一般的双向链表是链表节点包含数据域,而pjlib中是数据域包含链表节点.一般的链表指针域是链表结构的指针,而pjlib中是数据结构的指针.这种结构的优势我还没有体会到,可能要慢慢体会吧,但对链表头的理解却造成些许困惑.链表头是一个单独的list,而prev和next指向的是含有list的data结构,这种结构总让我觉得怪怪的. Pjli