记表备查-----动态规划算法

1.最优子结构

?组合优化问题,指的是问题有多个可行解,每一个可行解对应一个目标值,目的是要在可行解中求得目标值最优者(最大或最小)。

?最优子结构特性指的是问题的最优解包含的子问题的解相对于子问题而言也是最优的。

2.子问题重叠

?问题的一个递归算法在每个递归步骤产生分支子问题时并不总是新的,而是对部分子问题解了又解。当一个递归算法一次又一次地访问同一个子问题时,我们说该最优化问题具有重叠子问题的特性。

3.动态规划

?针对具有上述两个特征的优化问题,动态规划算法通常需要做如下的3步工作:

?(1)利用最优子结构定义一个关于解的目标值的递归方程。鉴于子问题的重叠性,如果自顶向下地用递归技术解每一个遇到的子问题,则可能陷入一个“时间黑洞”。

?(2)因此,动态规划以自底向上地对每个新产生的子问题仅解一次且将其解保存在一个表格中,需要时可以在表中查找,且能在常数时间内完成查找。

?(3)根据计算出的最优解的值构造对应的最优解。

参考:《算法设计、分析与实现:C、C++和Java》

时间: 2024-10-03 13:46:17

记表备查-----动态规划算法的相关文章

动态规划算法解最长公共子序列LCS问题

第一部分.什么是动态规划算法 ok,咱们先来了解下什么是动态规划算法. 动态规划一般也只能应用于有最优子结构的问题.最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似).简单地说,问题能够分解成子问题来解决. 动态规划算法分以下4个步骤: 描述最优解的结构 递归定义最优解的值 按自底向上的方式计算最优解的值   //此3步构成动态规划解的基础. 由计算出的结果构造一个最优解.   //此步如果只要求计算最优解的值时,可省略. 好,接下来,咱们

动态规划算法(Dynamic Programming,简称 DP)

动态规划算法(Dynamic Programming,简称 DP)似乎是一种很高深莫测的算法,你会在一些面试或算法书籍的高级技巧部分看到相关内容,什么状态转移方程,重叠子问题,最优子结构等高大上的词汇也可能让你望而却步. 而且,当你去看用动态规划解决某个问题的代码时,你会觉得这样解决问题竟然如此巧妙,但却难以理解,你可能惊讶于人家是怎么想到这种解法的. 实际上,动态规划是一种常见的「算法设计技巧」,并没有什么高深莫测,至于各种高大上的术语,那是吓唬别人用的,只要你亲自体验几把,这些名词的含义其实

五种常用算法之二:动态规划算法

动态规划算法: 基本思想: 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解.动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的.若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次.如果我们能够保存已解决的子问题的答案,而在需要时再找

动态规划算法--01背包问题

基本思想: 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解.动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解).若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很

动态规划——算法总结(三)

动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解.动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的.若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次.如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避

关于动态规划算法的总结

动态规划算法.在T大某位老师的书中说就是递推+反复子问题. 动态规划算法的效率主要与反复子问题的处理有关. 典型的题目有 陪审团.最大公共子串问题 1,最大公共子串问题 这个是动态规划的基础题目. 动态规划就是递推和反复子结构. 确定了递推关系后.找到一个能极大地降低反复运算的子结构至关重要.选的好了,时间效率会非常好. 这个问题,最好还是设第一个串为a,长度为n,第二个串为b.长度m.那么最长的子序列长度为f(n,m) 当a[n]=a[m]时 f(n,m)=1+f(n-1,m-1) 否则f(n

五大常用算法之二:动态规划算法

转自:http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741374.html 一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息.在求解任一子问题时,列出各种

(转)五大常用算法之二:动态规划算法

一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息.在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解.依次解决各子问题,最后一个子问题就是初始问题的解. 由于动态规划解决

多线程动态规划算法求解TSP(Traveling Salesman Problem) 并附C语言实现例程

TSP问题描述: 旅行商问题,即TSP问题(Travelling Salesman Problem)又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市.路径的选择目标是要求得的路径路程为所有路径之中的最小值.这篇文章解决的tsp问题的输入描述是: TSP问题的动态规划解法: 引用一下这篇文章,觉得作者把动态规划算法讲的非常明白:https://blog.csdn.ne