目标跟踪之klt---光流跟踪法

近来在研究跟踪,跟踪的方法其实有很多,如粒子滤波(pf)、meanshift跟踪,以及KLT跟踪或叫Lucas光流法,这些方法各自有各自的有点,对于粒子滤波而言,它能够比较好的在全局搜索到最优解,但其求解速度相对较慢,由于其是基于颜色直方图的计算,所以对相同颜色东西不太能够区别,meanshift方法很容易陷入局部最优,但速度还是挺快,所以现在很有一些人是将meanshift跟pf结合做跟踪,恰好在很多方面能够互补。

  Kanade-Lucas-Tomasi方法,在跟踪方面表现的也不错,尤其在实时计算速度上,用它来得到的,是很多点的轨迹“trajectory”,并且还有一些发生了漂移的点,所以,得到跟踪点之后要进行一些后期的处理,说到Kanade-Lucas-Tomasi方法,首先要追溯到Kanade-Lucas两人在上世纪80年代发表的paper:An Iterative Image Registration Technique with an Application to Stereo Vision,这里讲的是一种图像点定位的方法,即图像的局部匹配,将图像匹配问题,从传统的滑动窗口搜索方法变为一个求解偏移量d的过程,后来Jianbo Shi和Carlo Tomasi两人发表了一篇CVPR(94‘)的文章Good Features To Track,这篇文章,主要就是讲,在求解d的过程中,哪些情况下可以保证一定能够得到d的解,这些情况的点有什么特点(后来会发现,很多时候都是寻找的角点)。

  PS: 其实我很奇怪这个算法为什么叫做KLT算法,而不加上Jianbo Shi的名字~

  好吧,前戏就这么多,接下来进入正题,KLT是如何实现跟踪的?

  先说KLT算法的几个前提假设:
   1)亮度恒定
   2)时间连续或者是运动是“小运动”
     3)空间一致,临近点有相似运动,保持相邻

  这几个为什么要这么假设,我在后面来解释,很直观的讲,如果判断一个视频的相邻两帧I、J在某局部窗口w上是一样的,则在窗口w内有:I(x, y, t) = J(x‘, y‘, t+τ),亮度恒定的假设(假设1)即为了保证其等号成立不受亮度的影响,假设2是为了保证KLT能够找到点,假设3则为以下原因假设(即对于同一个窗口中,所有点的偏移量都相等):

  在窗口w上,所有(x, y)都往一个方向移动了(dx,  dy),从而得到(x‘, y‘),即t时刻的(x, y)点在t+τ时刻为(x+dx, y+dy),所以寻求匹配的问题可化为对以下的式子寻求最小值,或叫做最小化以下式子:

  用积分来表示上述式子,以上式子可等效为:

  这个式子的含义,即找到两副图像中,在W窗口中,I、J的差异,其中I以x-d/2为中心,J以x+d/2为中心,w/2为半径的一个矩形窗口间的差异,好吧,结合我们微积分的知识,函数ε(d)要取得最小值,这个极值点的导数一定为0,即
  

的值为0,由泰勒展开的性质:

可以得到:

于是,问题转化为:

其中:

从而,问题即为:

=>

即其等式可看作为:

其中,Z为一个2*2的矩阵,e为一个2*1的向量,

为了要使d能够得到解,则Z需要满足条件,即Z*Z‘矩阵可逆,其中Z‘为Z矩阵的转置(ZT),在一般情况下,角点具有这样的特点。

在OpenCV里面,找角点的函数可用

void cvGoodFeaturesToTrack(
   const CvArr* image
   CvArr* eigImage, CvArr* tempImage
   CvPoint2D32f* corners
   int* cornerCount
   double qualityLevel
   double minDistance
   const CvArr* mask=NULL
   int blockSize=3
   int useHarris=0 //一般采用Harris角点
   double k=0.04 );

然后可以通过函数cvCalcOpticalFlowPyrLK进行跟踪(好像OpenCV里面调用LK的函数不止这一个,这个是金字塔计算):

void cvCalcOpticalFlowPyrLK(
    const CvArr* prev,
    const CvArr* curr,
    CvArr* prevPyr,
    CvArr* currPyr,
    const CvPoint2D32f* prevFeatures,
    CvPoint2D32f* currFeatures,
    int count,
    CvSize winSize,
    int level,
    char* status,
    float* track error,
    CvTermCriteria criteria,
    int flags );

  OK,KLT算法的原理基本就这样,其实其跟踪效果并非太准,后来有很多提出的校正的方法,其中我目前看到比较实用的就是TLD算法的作者Zdenek Kalal在他2010年ICPR上的文章Forward-Backward Error: Automatic Detection of Tracking Failures提出的方法看起来非常不错,我正动手实现之。

网友做过的实验用光流+角点检测效果图:

用角点统计光流1

opencv 中d1-2:

opencv 中的cif-3:

fast 角点-4:

用gmm:

http://www.cnblogs.com/moondark/archive/2012/05/12/2497391.html

http://blog.sina.com.cn/s/blog_50363a7901011215.html

http://www.cnblogs.com/jtianwen2014/p/4249003.html knn分类

时间: 2024-11-05 15:58:47

目标跟踪之klt---光流跟踪法的相关文章

SQL Server 黑盒跟踪 -- 如何启用黑盒跟踪?

SQL Server 黑盒跟踪 -- 如何启用黑盒跟踪? 这个跟踪是通过将sp_trace_create的@options参数值设置为8来配置的.@options指定为跟踪设置的选项,当设置值为8,即TRACE_PRODUCE_BLACKBOX,指定服务器产生的最后5MB跟踪信息记录将由服务器保存.TRACE_PRODUCE_BLACKBOX与所有其他选项不兼容.@tracefile指定跟踪将写入的位置和文件名,在使用TRACE_PRODUCE_BLACKBOX选项时无法指定trace_file

KLT 光流

一 光流 光流的概念是Gibson在1950年首先提出来的.它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的相应关系,从而计算出相邻帧之间物体的运动信息的一种方法.一般而言,光流是因为场景中前景目标本身的移动.相机的运动,或者两者的共同运动所产生的. 其计算方法能够分为三类: (1)基于区域或者基于特征的匹配方法: (2)基于频域的方法: (3)基于梯度的方法: 简单来说,光流是空间运动物体在观測成像平

轨迹跟踪——二维轨迹跟踪

在读研期间,由于导师与水环研究生水生物有项目交叉,我主要研究视频跟踪技术.用来提取鱼类的轨迹以及鱼类的微动作.其中鱼类的轨迹提取我已做了两部分工作,二维视频跟踪,提取鱼类的轨迹:另一部分工作是重建三维鱼类游动轨迹.鱼类微特征提取还没有动工(惭愧). ---------- 二维的视频跟踪 在做这项工作之前我们花费了很大的力气去获取实验数据.购买了三个汉邦高科的摄像头,水箱,摄像头支架等.搭建好实验装置.(由于主要说视频跟踪,具体与鱼相关的就带过) 注意: 1.摄像头要固定住,这样拍摄的视频帧才有固

功能强大的IP定位器检查,跟踪,搜索和跟踪IP地址。查找IP地址并查找IP 位置

在线IP地址追踪工具 https://www.ip-address.org/ http://www.iptools.com/ https://www.site24x7.com/tools.html 原文地址:https://www.cnblogs.com/MeiCheng/p/11681950.html

计算机视觉目标跟踪的算法分类

摘自百度百科............. (1)基于区域的跟踪算法 基于区域的跟踪算法基本思想是:将目标初始所在区域的图像块作为目标模板,将目标模板与候选图像中所有可能的位置进行相关匹配,匹配度最高的地方即为目标所在的位置.最常用的相关匹配准则是差的平方和准则,(Sum of Square Difference,SSD). 起初,基于区域的跟踪算法中所用到的目标模板是固定的,如 Lucas 等人提出 Lucas-Kanade 方法,该方法利用灰度图像的空间梯度信息寻找最佳匹配区域,确定目标位置.之

目标跟踪方法概述

监控视频中对象跟踪问题,不少学者投入大量精力进行研究,已经产生各种不同的跟踪方法.对于跟踪方法,我们可以根据算法提取的视觉特征.定位跟踪目标的方法.算法同时跟踪目标的数量这几个方面进行分类叙述.以下就跟踪方法中的要点逐一进行说明. 跟踪对象的视觉特征 选择合适的视觉特征对于跟踪算法而言至关重要.通常选取的视觉特征可作为目标唯一描述,使得其在特征空间中显著可分.值得注意的是,特征的选取与目标的表示方法是紧密相关的.例如基于区域的目标模型中常用颜色直方图作为特征,而基于轮廓的算法则考察物体边缘特征.

目标跟踪算法综述

转自  https://www.zhihu.com/question/26493945 作者:YaqiLYU 第一部分:目标跟踪速览 先跟几个SOTA的tracker混个脸熟,大概了解一下目标跟踪这个方向都有些什么.一切要从2013年的那个数据库说起..如果你问别人近几年有什么比较niubility的跟踪算法,大部分人都会扔给你吴毅老师的论文,OTB50和OTB100(OTB50这里指OTB-2013,OTB100这里指OTB-2015,50和100分别代表视频数量,方便记忆): Wu Y, L

基于MeanShift的目标跟踪算法及实现

一.简介 首先扯扯无参密度估计理论,无参密度估计也叫做非参数估计,属于数理统计的一个分支,和参数密度估计共同构成了概率密度估计方法.参数密度估计方法要求特征空间服从一个已知的概率密度函数,在实际的应用中这个条件很难达到.而无参数密度估计方法对先验知识要求最少,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计.所以依靠无参密度估计方法,即不事先规定概率密度函数的结构形式,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出.常用的无参密度估计方法有:直方图法.最近邻域法和核密度估计

目标跟踪与检测技术介绍

基于有限集统计学理论的目标跟踪技术研究综述杨威,付耀文,龙建乾,... - <电子学报> - 2012 - 被引量: 31有限集统计学理论为杂波背景下的目标跟踪问题提供了一种工程友好的理论工具.对近年来基于有限集统计学理论的目标跟踪技术研究现状进行了综述,包括最优多目标贝叶斯滤波器及其近似技术.参数未知与机动多目标跟踪技术.航迹生成方法.单目标联合检测与跟踪滤波器及基于有限集观测的单目标滤波器等,对相关应用亦有所介绍.最后在已有研究发展的基础上,着眼于提高目标跟踪精度和增强目标跟踪鲁棒性的发展