mybatis 如何使用乐观锁

悲观锁的问题:

因为悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。如果加锁的时间过长,其他用户长时间无法访问,影响了程序的并发访问性,同时这样对数据库性能开销影响也很大,特别是对长事务而言,这样的开销往往无法承受。所以与悲观锁相对的,我们有了乐观锁。

乐观锁的原理大致一样,这里我提供两种思路:

1.使用数据版本(Version)记录机制实现,通过为数据库表增加一个数字类型的 “version” 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新。

2.乐观锁定的第二种实现方式和第一种差不多,同样是在需要乐观锁控制的table中增加一个字段,名称无所谓,字段类型使用时间戳(timestamp), 和上面的version类似,也是在更新提交的时候检查当前数据库中数据的时间戳和自己更新前取到的时间戳进行对比,如果一致则OK,否则就是版本冲突。

下面以mybatis 举例说明,关键代码如下:

    1. <update id="updateGoodsUseCAS" parameterType="Goods">
    2. <![CDATA[
    3. set status=#{status},name=#{name},version=version+1
    4. ]]>
    5. </update>

银行两操作员同时操作同一账户就是典型的例子。
比如A、B操作员同时读取一余额为1000元的账户,A操作员为该账户增加100元,B操作员同时为该账户扣除50元,A先提交,B后提交。最后实际账户余额为1000-50=950元,但本该为1000+100-50=1050。这就是典型的并发问题。

乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本(Version)记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。

读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有一个version字段,当前值为1;而当前帐户余额字段(balance)为1000元。假设操作员A先更新完,操作员B后更新。
a、操作员A此时将其读出(version=1),并从其帐户余额中增加100(1000+100=1100)。
b、在操作员A操作的过程中,操作员B也读入此用户信息(version=1),并从其帐户余额中扣除50(1000-50=950)。
c、操作员A完成了修改工作,将数据版本号加一(version=2),连同帐户增加后余额(balance=1100),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,数据库记录version更新为2。
d、操作员B完成了操作,也将版本号加一(version=2)试图向数据库提交数据(balance=950),但此时比对数据库记录版本时发现,操作员B提交的数据版本号为2,数据库记录当前版本也为2,不满足
“提交版本必须大于记录当前版本才能执行更新 “的乐观锁策略,因此,操作员B的提交被驳回。
这样,就避免了操作员B用基于version=1的旧数据修改的结果覆盖操作员A的操作结果的可能。

操作员A操作如下:

select id, balance, version from account where id="1";
查询结果:id=1, balance=1000, version=1

update account
set balance=balance+100, version=version+1
where id="1" and version=1

select id, balance, version from account where id="1";
查询结果:id=1, balance=1100, version=2

操作员B操作如下:

select id, balance, version from account where id="1";
查询结果:id=1, balance=1000, version=1

#操作员A已修改成功,实际account.balance=1100、account.version=2,操作员B也将版本号加一(version=2)试图向数据库提交数据(balance=950),但此时比对数据库记录版本时发现,操作员B提交的数据版本号为2,数据库记录当前版本也为2,不满足 “提交版本必须大于记录当前版本才能执行更新 “的乐观锁策略,因此,操作员B的提交被驳回。
update account
set balance=balance-50, version=version+1
where id="1" and version=1 

select id, balance, version from account where id="1";
查询结果:id=1, balance=1100, version=2

Hibernate、JPA等ORM框架或者实现,是使用版本号,再判断UPDATE后返回的数值

    1. public void goodsDaoTest(){
    2. int goodsId = 1;
    3. //根据相同的id查询出商品信息,赋给2个对象
    4. this.goodsDao.getGoodsById(goodsId);
    5. this.goodsDao.getGoodsById(goodsId);
    6. //打印当前商品信息
    7. System.out.println(goods2);
    8. //更新商品信息1
    9. 2);//修改status为2
    10. int updateResult1 = this.goodsDao.updateGoodsUseCAS(goods1);
    11. "修改商品信息1"+(updateResult1==1?"成功":"失败"));
    12. //更新商品信息2
    13. 2);//修改status为2
    14. int updateResult2 = this.goodsDao.updateGoodsUseCAS(goods1);
    15. "修改商品信息2"+(updateResult2==1?"成功":"失败"));
    16. }
    1. 1,goods status:1,goods name:道具,goods version:1
    2. 1,goods status:1,goods name:道具,goods version:1
    3. 修改商品信息2失败
时间: 2024-10-20 01:35:54

mybatis 如何使用乐观锁的相关文章

mybatis 乐观锁和逻辑删除

本篇介绍easymybatis如配置乐观锁和逻辑删除. 乐观锁 easymybatis提供的乐观锁使用方式跟JPA一样,使用@Version注解来实现.即:数据库增加一个int或long类型字段version,然后实体类version字段上加上@Version注解即可.实现原理是根据mysql的行锁机制(InnoDB下),同一条记录只能被一条SQL执行,后面的SQL排队等待.这样version改变后,等待中的SQL还是老的version号,因此更新失败. @Version private Lon

mybatis乐观锁实现,解决并发问题

银行两操作员同时操作同一账户就是典型的例子.比如A.B操作员同时读取一余额为1000元的账户,A操作员为该账户增加100元,B操作员同时为该账户扣除50元,A先提交,B后提交.最后实际账户余额为1000-50=950元,但本该为1000+100-50=1050.这就是典型的并发问题. 乐观锁机制在一定程度上解决了这个问题.乐观锁,大多是基于数据版本(Version)记录机制实现.何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version

mysql乐观锁总结和实践(转载)

原文地址:http://chenzhou123520.iteye.com/blog/1863407 乐观锁介绍: 乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让返回用户错误的信息,让用户决定如何去做.那么我们如何实现乐观锁呢,一般来说有以下2种方式: 1.使用数据版本(Version)记录机制实现,这是乐观锁最常用的一种实现方式.何谓数据版本?即为数

【MySQL】乐观锁和悲观锁

最近学习了一下数据库的悲观锁和乐观锁,根据自己的理解和网上参考资料总结如下: 悲观锁介绍(百科): 悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中, 将数据处于锁定状态.悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了 加锁机制,也无法保证外部系统不会修改数据). 使用场景举例:以MySQL InnoDB为例 商品goods表中有一

mysql乐观锁总结和实践

上一篇文章<MySQL悲观锁总结和实践>谈到了MySQL悲观锁,但是悲观锁并不是适用于任何场景,它也有它存在的一些不足,因为悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性.如果加锁的时间过长,其他用户长时间无法访问,影响了程序的并发访问性,同时这样对数据库性能开销影响也很大,特别是对长事务而言,这样的开销往往无法承受.所以与悲观锁相对的,我们有了乐观锁,具体参见下面介绍: 乐观锁介绍: 乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据

mysql乐观锁总结和实践(转)

原文:mysql乐观锁总结和实践 上一篇文章<MySQL悲观锁总结和实践>谈到了MySQL悲观锁,但是悲观锁并不是适用于任何场景,它也有它存在的一些不足,因为悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性.如果加锁的时间过长,其他用户长时间无法访问,影响了程序的并发访问性,同时这样对数据库性能开销影响也很大,特别是对长事务而言,这样的开销往往无法承受.所以与悲观锁相对的,我们有了乐观锁,具体参见下面介绍: 乐观锁介绍: 乐观锁( Optimistic Locking )

乐观锁与悲观锁——解决并发问题(转)

引言 为什么需要锁(并发控制)? 在多用户环境中,在同一时间可能会有多个用户更新相同的记录,这会产生冲突.这就是著名的并发性问题. 典型的冲突有: 丢失更新:一个事务的更新覆盖了其它事务的更新结果,就是所谓的更新丢失.例如:用户A把值从6改为2,用户B把值从2改为6,则用户A丢失了他的更新. 脏读:当一个事务读取其它完成一半事务的记录时,就会发生脏读取.例如:用户A,B看到的值都是6,用户B把值改为2,用户A读到的值仍为6. 为了解决这些并发带来的问题. 我们需要引入并发控制机制. 并发控制机制

乐观锁与悲观锁——解决并发问题

悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁.传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁. 乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制.乐观锁适用于

(转)乐观锁与悲观锁——解决并发问题

引言 为什么需要锁(并发控制)? 在多用户环境中,在同一时间可能会有多个用户更新相同的记录,这会产生冲突.这就是著名的并发性问题. 典型的冲突有: 丢失更新:一个事务的更新覆盖了其它事务的更新结果,就是所谓的更新丢失.例如:用户A把值从6改为2,用户B把值从2改为6,则用户A丢失了他的更新. 脏读:当一个事务读取其它完成一半事务的记录时,就会发生脏读取.例如:用户A,B看到的值都是6,用户B把值改为2,用户A读到的值仍为6. 为了解决这些并发带来的问题. 我们需要引入并发控制机制. 并发控制机制