医药数据统计分析联系QQ:231469242
# -*- coding: utf-8 -*- import seaborn as sns sns.set() df = sns.load_dataset("iris") sns.pairplot(df, hue="species", size=2.5)
# -*- coding: utf-8 -*- ‘‘‘
医药数据统计分析联系QQ:231469242
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Multivariate/multipleRegression
Multiple Regression - Shows how to calculate the best fit to a plane in 3D, and how to find the corresponding statistical parameters. - Demonstrates how to make a 3d plot. - Example of multiscatterplot, for visualizing correlations in three- to six-dimensional datasets. ‘‘‘ # Import standard packages import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns # additional packages import sys import os sys.path.append(os.path.join(‘..‘, ‘..‘, ‘Utilities‘)) try: # Import formatting commands if directory "Utilities" is available from ISP_mystyle import showData except ImportError: # Ensure correct performance otherwise def showData(*options): plt.show() return # additional packages ... # ... for the 3d plot ... from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm # ... and for the statistic from statsmodels.formula.api import ols def generateData(): ‘‘‘ Generate and show the data: a plane in 3D ‘‘‘ x = np.linspace(-5,5,101) (X,Y) = np.meshgrid(x,x) # To get reproducable values, I provide a seed value np.random.seed(987654321) Z = -5 + 3*X-0.5*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1]) # Set the color myCmap = cm.GnBu_r # If you want a colormap from seaborn use: #from matplotlib.colors import ListedColormap #myCmap = ListedColormap(sns.color_palette("Blues", 20)) # Plot the figure fig = plt.figure() ax = fig.gca(projection=‘3d‘) surf = ax.plot_surface(X,Y,Z, cmap=myCmap, rstride=2, cstride=2, linewidth=0, antialiased=False) ax.view_init(20,-120) ax.set_xlabel(‘X‘) ax.set_ylabel(‘Y‘) ax.set_zlabel(‘Z‘) fig.colorbar(surf, shrink=0.6) outFile = ‘3dSurface.png‘ showData(outFile) return (X.flatten(),Y.flatten(),Z.flatten()) def regressionModel(X,Y,Z): ‘‘‘Multilinear regression model, calculating fit, P-values, confidence intervals etc.‘‘‘ # Convert the data into a Pandas DataFrame df = pd.DataFrame({‘x‘:X, ‘y‘:Y, ‘z‘:Z}) # --- >>> START stats <<< --- # Fit the model model = ols("z ~ x + y", df).fit() # Print the summary print((model.summary())) # --- >>> STOP stats <<< --- return model._results.params # should be array([-4.99754526, 3.00250049, -0.50514907]) def linearModel(X,Y,Z): ‘‘‘Just fit the plane, using the tools from numpy‘‘‘ # --- >>> START stats <<< --- M = np.vstack((np.ones(len(X)), X, Y)).T bestfit = np.linalg.lstsq(M,Z) # --- >>> STOP stats <<< --- print((‘Best fit plane:‘, bestfit)) return bestfit def scatterplot(): ‘‘‘Fancy scatterplots, using the package "seaborn" ‘‘‘ df = sns.load_dataset("iris") sns.pairplot(df, hue="species", size=2.5) showData(‘multiScatterplot.png‘) if __name__ == ‘__main__‘: scatterplot() (X,Y,Z) = generateData() regressionModel(X,Y,Z) linearModel(X,Y,Z)
时间: 2024-10-21 20:01:29