Bars, rectangles with bases on x-axis

Usage

geom_bar(mapping = NULL, data = NULL, stat = "bin", position = "stack", ...)

Arguments

mapping
The aesthetic mapping, usually constructed with aes or aes_string. Only needs to be set at the layer level if you are overriding the plot defaults.
data
A layer specific dataset - only needed if you want to override the plot defaults.
stat
The statistical transformation to use on the data for this layer.
position
The position adjustment to use for overlappling points on this layer
...
other arguments passed on to layer. This can include aesthetics whose values you want to set, not map. See layer for more details.

Description

The bar geom is used to produce 1d area plots: bar charts for categorical x, and histograms for continuous y. stat_bin explains the details of these summaries in more detail. In particular, you can use the weight aesthetic to create weighted histograms and barcharts where the height of the bar no longer represent a count of observations, but a sum over some other variable. See the examples for a practical example.

Details

The heights of the bars commonly represent one of two things: either a count of cases in each group, or the values in a column of the data frame. By default, geom_bar uses stat="bin". This makes the height of each bar equal to the number of cases in each group, and it is incompatible with mapping values to the y aesthetic. If you want the heights of the bars to represent values in the data, use stat="identity" and map a value to the y aesthetic.

By default, multiple x‘s occuring in the same place will be stacked a top one another by position_stack. If you want them to be dodged from side-to-side, see position_dodge. Finally, position_fill shows relative propotions at each x by stacking the bars and then stretching or squashing to the same height.

Sometimes, bar charts are used not as a distributional summary, but instead of a dotplot. Generally, it‘s preferable to use a dotplot (see geom_point) as it has a better data-ink ratio. However, if you do want to create this type of plot, you can set y to the value you have calculated, and use stat=‘identity‘

A bar chart maps the height of the bar to a variable, and so the base of the bar must always been shown to produce a valid visual comparison. Naomi Robbins has a nice article on this topic. This is the reason it doesn‘t make sense to use a log-scaled y axis with a bar chart

Aesthetics

geom_bar understands the following aesthetics (required aesthetics are in bold):

  • x
  • alpha
  • colour
  • fill
  • linetype
  • size
  • weight

Examples

# Generate data c <- ggplot(mtcars, aes(factor(cyl))) # By default, uses stat="bin", which gives the count in each category c + geom_bar()

c + geom_bar(width=.5)

c + geom_bar() + coord_flip()

c + geom_bar(fill="white", colour="darkgreen")

# Use qplot qplot(factor(cyl), data=mtcars, geom="bar")

qplot(factor(cyl), data=mtcars, geom="bar", fill=factor(cyl))

# When the data contains y values in a column, use stat="identity" library(plyr) # Calculate the mean mpg for each level of cyl mm <- ddply(mtcars, "cyl", summarise, mmpg = mean(mpg)) ggplot(mm, aes(x = factor(cyl), y = mmpg)) + geom_bar(stat = "identity")

# Stacked bar charts qplot(factor(cyl), data=mtcars, geom="bar", fill=factor(vs))

qplot(factor(cyl), data=mtcars, geom="bar", fill=factor(gear))

# Stacked bar charts are easy in ggplot2, but not effective visually, # particularly when there are many different things being stacked ggplot(diamonds, aes(clarity, fill=cut)) + geom_bar()

ggplot(diamonds, aes(color, fill=cut)) + geom_bar() + coord_flip()

# Faceting is a good alternative: ggplot(diamonds, aes(clarity)) + geom_bar() + facet_wrap(~ cut)

# If the x axis is ordered, using a line instead of bars is another # possibility: ggplot(diamonds, aes(clarity)) + geom_freqpoly(aes(group = cut, colour = cut))

# Dodged bar charts ggplot(diamonds, aes(clarity, fill=cut)) + geom_bar(position="dodge")

# compare with ggplot(diamonds, aes(cut, fill=cut)) + geom_bar() + facet_grid(. ~ clarity)

# But again, probably better to use frequency polygons instead: ggplot(diamonds, aes(clarity, colour=cut)) + geom_freqpoly(aes(group = cut))

# Often we don‘t want the height of the bar to represent the # count of observations, but the sum of some other variable. # For example, the following plot shows the number of diamonds # of each colour qplot(color, data=diamonds, geom="bar")

# If, however, we want to see the total number of carats in each colour # we need to weight by the carat variable qplot(color, data=diamonds, geom="bar", weight=carat, ylab="carat")

# A bar chart used to display means meanprice <- tapply(diamonds$price, diamonds$cut, mean) cut <- factor(levels(diamonds$cut), levels = levels(diamonds$cut)) qplot(cut, meanprice)

qplot(cut, meanprice, geom="bar", stat="identity")

qplot(cut, meanprice, geom="bar", stat="identity", fill = I("grey50"))

# Another stacked bar chart example k <- ggplot(mpg, aes(manufacturer, fill=class)) k + geom_bar()

# Use scales to change aesthetics defaults k + geom_bar() + scale_fill_brewer()

k + geom_bar() + scale_fill_grey()

# To change plot order of class varible # use factor() to change order of levels mpg$class <- factor(mpg$class, levels = c("midsize", "minivan", "suv", "compact", "2seater", "subcompact", "pickup")) m <- ggplot(mpg, aes(manufacturer, fill=class)) m + geom_bar()

时间: 2024-10-08 19:59:32

Bars, rectangles with bases on x-axis的相关文章

Axis&#173; Aligned ?Rectangles

Describe ?an? algorithm ?that ?takes ?an ?unsorted ?array ?of ?axis‐aligned ?rectangles ?and? returns ?any ?pair ?of ?rectangles ?that? overlaps,? if ?there? is ?such? a ?pair.? ?Axis‐aligned? means? that? all ?the? rectangle? sides? are ?either ?par

UVA 10574 - Counting Rectangles 计数

Given n points on the XY plane, count how many regular rectangles are formed. A rectangle is regular if and only if its sides are all parallel to the axis.InputThe ?rst line contains the number of tests t (1 ≤ t ≤ 10). Each case contains a single lin

UVA - 10574 Counting Rectangles

Description Problem H Counting Rectangles Input: Standard Input Output:Standard Output Time Limit: 3Seconds   Given n points on the XY plane, count how many regular rectanglesare formed. A rectangle is regular if and only if its sides are all paralle

ZOJ1139 POJ1468 Rectangles【水题】

Rectangles Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 3519 Accepted: 1793 Description A specialist in VLSI design testing must decide if there are some components that cover each other for a given design. A component is represented as

Bars Example

Qt 5.10Qt Data VisualizationBars Example Qt 5.10.0 Reference Documentation ContentsRunning the ExampleCreating the ApplicationSetting up the GraphAdding Data to the GraphUsing Widgets to Control the GraphSelecting a Row/column by Clicking an Axis Lab

Axis实现 web service接口开发 + 客户端调用

看到网上挺多人找webservice axis开发案例,但是网上较多的都是有点乱,初学者不太容易看得懂,所以最近看到自己终于有了点空闲时间,就上传了一份比较简单的webservice axis的完整案例. 只适用于初学者. 一.新建一个web项目 导入lib包. 2.配置 web.xml <!-- axis 配置 -->   <servlet>         <display-name>Apache-Axis Servlet</display-name>

R语言低级绘图函数-axis

axis函数用来在一张图表上添加轴线,区别于传统的x轴和y轴,axis 允许在上,下,左, 右4个方向添加轴线 以x轴为例,一条轴线包含3个元素,水平的一条横线,叫做axis line , 刻度线, 叫做tick line, 对应的标签 labels 基本用法: 通过side 参数设置需要添加的轴线的方向,从下边开始,沿逆时针方向,数字为1到4 代码示例: par(oma = c(1, 1, 1, 1), mfrow = c(1, 4)) plot(1:5, 1:5, xlim = c(0,6)

PeopleSoft Rich Text Boxes上定制Tool Bars

在使用PT8.50或在8.51时,你可能遇到过Rich-text编辑框.该插件使你能够格式化文本,添加颜色.链接.图片等等.下面是效果图: 如果页面中只有这么一个字段,该文本框就会有足够的空间来容纳其中的tools bars了,但是通常页面中会有许多字段, 因而留给该表示该文本框的字段的所需的空间就少了,于是需要根据业务需求对文本框中的工具条目进行瘦身或者适当的扩展. 简单的实现方式如下: 在Long Edit Box的Page Field 属性上有“Options”选项,勾选“Enable R

Project Euler 85 :Counting rectangles 数长方形

Counting rectangles By counting carefully it can be seen that a rectangular grid measuring 3 by 2 contains eighteen rectangles: Although there exists no rectangular grid that contains exactly two million rectangles, find the area of the grid with the