GBDT和随机森林的区别

GBDT和随机森林的相同点:

1、都是由多棵树组成

2、最终的结果都是由多棵树一起决定

GBDT和随机森林的不同点:

1、组成随机森林的树可以是分类树,也可以是回归树;而GBDT只由回归树组成

2、组成随机森林的树可以并行生成;而GBDT只能是串行生成

3、对于最终的输出结果而言,随机森林采用多数投票等;而GBDT则是将所有结果累加起来,或者加权累加起来

4、随机森林对异常值不敏感,GBDT对异常值非常敏感

5、随机森林对训练集一视同仁,GBDT是基于权值的弱分类器的集成

6、随机森林是通过减少模型方差提高性能,GBDT是通过减少模型偏差提高性能

PS:本人暂时只能想到这些,如果还有其他,欢迎大家补充!

时间: 2024-10-21 00:27:29

GBDT和随机森林的区别的相关文章

Spark2.0机器学习系列之6:GBDT(梯度提升决策树)、GBDT与随机森林差异、参数调试及Scikit代码分析

概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman. 研究GBDT一定要看看Friedman的pa

集成学习:随机森林.GBDT

集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5): 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升 常见的集成学习思想有: Bagging Boosting Stacking Why need Ensemble Learning? 1. 弱分

随机森林和GBDT进行比较

4, GBDT和随机森林的相同点: 1.都是由多棵树组成2.最终的结果都是由多棵树一起决定 5,GBDT和随机森林的不同点: 1.组成随机森林的树可以是分类树,也可以是回归树:而GBDT只由回归树组成2.组成随机森林的树可以并行生成:而GBDT只能是串行生成 3.对于最终的输出结果而言,随机森林采用多数投票等:而GBDT则是将所有结果累加起来,或者加权累加起来 4.随机森林对异常值不敏感,GBDT对异常值非常敏感 5.随机森林对训练集一视同仁,GBDT是基于权值的弱分类器的集成 6.随机森林是通

随机森林 算法过程及分析

简单来说,随机森林就是Bagging+决策树的组合(此处一般使用CART树).即由很多独立的决策树组成的一个森林,因为每棵树之间相互独立,故而在最终模型组合时,每棵树的权重相等,即通过投票的方式决定最终的分类结果. 随机森林算法主要过程: 1.样本集的选择. 假设原始样本集总共有N个样例,则每轮从原始样本集中通过Bootstraping(有放回抽样)的方式抽取N个样例,得到一个大小为N的训练集.在原始样本集的抽取过程中,可能有被重复抽取的样例,也可能有一次都没有被抽到的样例. 共进行k轮的抽取,

机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如

机器学习中的算法——决策树模型组合之随机森林与GBDT

前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 美国金融银行业的大数据算法:随机森林模型+综合模型 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大大的减少单决策树带来的毛病,有

决策树模型组合之(在线)随机森林与GBDT

前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大 大的减少单决策树带来的毛病,有点类似于三个臭皮匠等于一个诸葛亮的做法,虽然这几

决策树模型组合之随机森林与GBDT

本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如说有Boos

决策树模型组合之随机森林与GBDT(转)

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected].也可以加我的微博: @leftnoteasy 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可