bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

题目链接:

4517: [Sdoi2016]排列计数

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 846  Solved: 530
[Submit][Status][Discuss]

Description

求有多少种长度为 n 的序列 A,满足以下条件:

1 ~ n 这 n 个数在序列中各出现了一次

若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的

满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。

接下来 T 行,每行两个整数 n、m。

T=500000,n≤1000000,m≤1000000

Output

输出 T 行,每行一个数,表示求出的序列数

Sample Input

5

1 0

1 1

5 2

100 50

10000 5000

Sample Output

0

1

20

578028887

60695423

题意:

思路:

我们很容易知道方案数是C(n,m)*dp[n-m];

dp[n]表示n的错排数;递推公式是dp[n]=(n-1)*(dp[n-1]+dp[n-2])=n*dp[n-1]+(-1)n ;

AC代码:

/**************************************************************
    Problem: 4517
    User: LittlePointer
    Language: C++
    Result: Accepted
    Time:11108 ms
    Memory:16916 kb
****************************************************************/

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
const int maxn=1e6+10;
LL dp[maxn],p[maxn];
inline void init()
{
    dp[0]=1;dp[1]=0;dp[2]=1;p[1]=1;p[2]=2;p[0]=1;
    for(int i=3;i<maxn;i++)dp[i]=(LL)(i-1)*(dp[i-1]+dp[i-2])%mod,p[i]=p[i-1]*(LL)i%mod;
}
LL pow_mod(LL x,LL y)
{
    LL s=1,base=x;
    while(y)
    {
        if(y&1)s=s*base%mod;
        base=base*base%mod;
        y>>=1;
    }
    return s;
}
int main()
{
    //freopen("in.txt","r",stdin);
    init();
    int t,n,m;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        if(m>n){puts("0");continue;}
        LL ans=p[n]*dp[n-m]%mod,temp=p[m]*p[n-m]%mod;
        ans=ans*pow_mod(temp,mod-2)%mod;
        printf("%lld\n",ans);
    }
    return 0;
}

  

时间: 2024-10-05 03:45:21

bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)的相关文章

[SDOI2016] 排列计数 (组合数学)

[SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7109+7 取模. 输入输出格式 输入格式: 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. 输出格式: 输出 T 行,每行一个数,表示求出的序列数 输入输出样例 输入样例#1: 5 1 0 1 1

BZOJ 2111 ZJOI2010 Perm 排列计数 组合数学+Lucas定理

题目大意:求1~n的排列能组成多少种小根堆 考虑一个1~i的排列所构成的堆,l为左儿子大小,r为右儿子的大小 那么1一定是堆顶 左儿子和右儿子分别是一个堆 显然如果选出l个数给左儿子 那么左儿子的方案数显然是f[l],右儿子的方案数为f[r] 于是有f[i]=C(i-1,l)*f[l]*f[r] 于是我们线性筛处理出阶乘和阶乘的逆元 代入即可得到WA 原因是这题n可以大于p 此时要用到Lucas定理 坑死了 #include <cstdio> #include <cstring>

BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. T=500000,n≤1000000,m≤1000000 Output 输出 T 行,每行一个数,表示

数学(错排):BZOJ 4517: [Sdoi2016]排列计数

4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status][Discuss] Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第

BZOJ 4517: [Sdoi2016]排列计数

4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status][Discuss] Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第

【BZOJ4517】[Sdoi2016]排列计数 组合数+错排

[BZOJ4517][Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. T=500000,n≤1000000,m≤1000000 Output 输出 T 行,每行一个

[Sdoi2016]排列计数

问题 A: [Sdoi2016]排列计数 时间限制: 3 Sec  内存限制: 512 MB 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. 输入 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. T=500000,n≤1000000,m≤1000000 输出 输出

bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: using namespace std; 3: const int N = 1e6+5; 4: typedef long long LL; 5: LL m, p, T, x, y, F[N]; 6: LL n, size[N<<1]; 7: LL f[N]; 8: LL inv(LL t, LL

bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】

第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}(-1)^{t-1}\sum_{i_1<i_2<...<i_t}(n-t)! \] \[ D_n=n!+\sum_{t=1}^{n}(-1)^tC_{n}^{t}(n-t)! \] \[ D_n=n!+\sum(-1)^t\frac{n!}{t!} \] 推到这一步就可以了,然后观察数据范围显