题意:
给定n个点的带边权树Q个询问。
下面n-1行给出树
下面Q行每行一个数字表示询问。
首先求出dp[N] :dp[i]表示i点距离树上最远点的距离
询问u, 表示求出 dp 数组中最长的连续序列使得序列中最大值-最小值 <= u,输出这个序列的长度。
思路:
求dp数组就是求个树的直径然后dfs一下。
对于每个询问,可以用一个单调队列维护一下。O(n)的回答。
#include <cstdio> #include <cstring> #include <string> #include <iostream> #include <queue> #include <algorithm> #include <cmath> using namespace std; template <class T> inline bool rd(T &ret) { char c; int sgn; if(c=getchar(),c==EOF) return 0; while(c!='-'&&(c<'0'||c>'9')) c=getchar(); sgn=(c=='-')?-1:1; ret=(c=='-')?0:(c-'0'); while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0'); ret*=sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-'); x = -x; } if(x>9) pt(x/10); putchar(x%10+'0'); } typedef long long ll; const int N = 50010; int n, Q; struct Edge{ int to, nex; ll dis; }edge[N<<1]; struct node { int v, id; node() {} node(int _id, int _v) { id = _id; v = _v; } }; int head[N], edgenum; void init(){for(int i = 1; i <= n; i++)head[i] = -1; edgenum = 0;} void add(int u, int v, ll d){ Edge E = {v, head[u], d}; edge[edgenum] = E; head[u] = edgenum++; } ll dis[N], dp[N], len; int Stack[N], top, pre[N], vis[N]; int BFS(int x){ for(int i = 1; i <= n; i++) dis[i] = -1; dis[x] = 0; pre[x] = -1; int far = x; queue<int> q; q.push(x); while(!q.empty()) { int u = q.front(); q.pop(); for(int i = head[u]; ~i; i = edge[i].nex){ int v = edge[i].to; if(dis[v] == -1) { dis[v] = dis[u] + edge[i].dis; pre[v] = u; if(dis[far] < dis[v]) far = v; q.push(v); } } } return far; } void dfs(int u){ vis[u] = 1; for(int i = head[u]; ~i; i = edge[i].nex) { int v = edge[i].to; if(vis[v])continue; dp[v] = dp[u] + edge[i].dis; dfs(v); } } void build(){//预处理树的直径 int E = BFS(1); int S = BFS(E); top = 0; int u = S; len = dis[S]; for(int i = 1; i <= n; i++) vis[i] = 0; while(u!=-1) { Stack[top++] = u; dp[u] = max(dis[u], len - dis[u]); vis[u] = 1; u = pre[u]; } for(int i = 0; i < top; i++) dfs(Stack[i]); } void input(){ init(); ll d; for(int i = 1, u, v; i < n; i++) { rd(u); rd(v); rd(d); add(u, v, d); add(v, u, d); } } node mx[N], mi[N]; int h1, t1, h2, t2; int main() { int v, idx, ans; while(cin>>n>>Q, n+Q) { input(); build(); while(Q--) { rd(v); ans = h1 = t1 = h2 = t2 = 0; idx = 1; for (int i = 1; i <= n; ++i) { while (h1!=t1 && mx[t1-1].v <= dp[i]) -- t1; mx[t1++] = node(i, dp[i]); while (h2!=t2 && mi[t2-1].v >= dp[i]) -- t2; mi[t2++] = node(i, dp[i]); while (h1!=t1&&h2!=t2) { if (mx[h1].v-mi[h2].v>v) ++ idx; else break; while (h1!=t1&&mx[h1].id<idx) ++h1; while (h2!=t2&&mi[h2].id<idx) ++h2; } ans = max(ans, i-idx+1); } pt(ans); putchar('\n'); } } return 0; }
时间: 2024-10-12 04:48:56