增强学习Reinforcement Learning经典算法梳理2:蒙特卡洛方法

1 前言

在上一篇文章中,我们介绍了基于Bellman方程而得到的Policy Iteration和Value Iteration两种基本的算法,但是这两种算法实际上很难直接应用,原因在于依然是偏于理想化的两个算法,需要知道状态转移概率,也需要遍历所有的状态。对于遍历状态这个事,我们当然可以不用做到完全遍历,而只需要尽可能的通过探索来遍及各种状态即可。而对于状态转移概率,也就是依赖于模型Model,这是比较困难的事情。

什么是状态转移?就比如一颗子弹,如果我知道它的运动速度,运动的当前位置,空气阻力等等,我就可以用牛顿运动定律来描述它的运动,进而知道子弹下一个时刻会大概在哪个位置出现。那么这个基于牛顿运动定律来描述其运动就是一个模型Model,我们也就可以知道其状态(空间位置,速度)的变化概率。

那么基本上所以的增强学习问题都需要有一定的模型的先验知识,至少根据先验知识我们可以来确定需要多少输入可以导致多少输出。比如说玩Atari这个游戏,如果输入只有屏幕的一半,那么我们知道不管算法多么好,也无法训练出来。因为输入被限制了,而且即使是人类也是做不到的。但是以此同时,人类是无需精确的知道具体的模型应该是怎样的,人类可以完全根据观察来推算出相应的结果。

所以,对于增强学习的问题,或者说对于任意的决策与控制问题。输入输出是由基本的模型或者说先验知识决定的,而具体的模型则可以不用考虑。所以,为了更好的求解增强学习问题,我们更关注Model Free的做法。简单的讲就是如果完全不知道状态转移概率(就像人类一样),我们该如何求得最优的策略呢?

本文介绍蒙特卡洛方法。

2 蒙特卡洛方法

蒙特卡洛方法只面向具有阶段episode的问题。比如玩一局游戏,下一盘棋,是有步骤,会结束的。而有些问题则不一定有结束,比如开赛车,可以无限的开下去,或者说需要特别特别久才能结束。能不能结束是一个关键。因为只要能结束,那么每一步的reward都是可以确定的,也就是可以因此来计算value。比如说下棋,最后赢了就是赢了,输了就是输了。而对于结束不了的问题,我们只能对于value进行估计。

那么蒙特卡洛方法只关心这种能够较快结束的问题。蒙特卡洛的思想很简单,就是反复测试求平均。如果大家知道在地上投球计算圆周率的事情就比较好理解了。不清楚的童鞋可以网上找找看。那么如何用在增强学习上呢?

既然每一次的episode都可以到结束,那么意味着根据:

每一步的reward都知道,也就意味着每一步的return Gt 都可以计算出来。这就好了。我们反复做测试,这样很多状态会被遍历到,而且不止一次,那么每次就可以把在状态下的return求和取平均。

当episode无限大时,得到的数据也就接近于真实的数据。

蒙特卡洛方法就是使用统计学的方法来取代Bellman方法的计算方法。

上面的算法叫first-visit MC。也就是每一次的episode中state只使用第一次到达的t来计算return。

另一种方法就是every-visit,就是每一次的episode中state只要访问到就计算return求平均。

所以可以看到蒙特卡洛方法是极其简单的。但是缺点也是很明显的,需要尽可能多的反复测试,而且需要到每一次测试结束后才来计算,需要耗费大量时间。但是,大家知道吗?AlphaGo就是使用蒙特卡洛的思想。不是蒙特卡洛树搜索,而是说在增强学习中使用蒙特卡洛方法的思想。AlphaGo每次也是到下棋结束,而且只使用最后的输赢作为return。所以这也是非常神奇的事,只使用最后的输赢结果,竟然能够优化每一步的走法。

3 使用蒙特卡洛方法来控制

上面说的蒙特卡洛方法只是能够对当前的policy进行评估。那么大家记得上一个blog说的policy iteration方法吗?我们可以在policy iteration中使用蒙特卡洛方法进行评估,然后使用greedy policy更新。

那么依然是有两种做法。一种就是在一个policy下测试多次,评估完全,然后更新policy,然后再做很多测试。另一种就是不完全评估,每次测试一次完就评估,评估完就更新:

第一种做法:

第二种做法:

两种做法都能够收敛,那么显然第二种做法的速度更快。

那么再改进一点,就是改变greedy policy中?的值,使得不断变小趋于0,这个时候最后得到的policy就是完全的最优policy了。

这个算法就叫做GLIE Monte-Carlo Control:

其他变种:

Monte Carlo with Exploring Starts,使用Q(s,a),然后使用上面说的第二种做法,一次episode就更新一次policy,而且policy直接使用Q值。

policy的更新使用了??greedy,目的就是能够更好的探索整个状态空间。

4 Off Policy Learning

那么上面的方法一直是基于当前的policy,为了探索状态空间,采用一个次优的策略??greedy policy来探索。那么是不是可以更直接的使用两个policy。一个policy用来探索空间,也就是behavior policy,另一个policy就是为了达到最优policy,叫做target policy。那么这种方法就叫做off policy learning。On-policy的方法比较简单,off-policy 方法需要更多的概念和标记,比较不好理解,而且,由于behaviour policy和target policy不相关,这种方法比较不容易收敛。但是off-policy更强大,更通用,实际上的on-policy方法就是off-policy方法的一个子集。比如,就可以使用off-policy从人类专家或者传统的控制算法来学习一个增强学习模型。

关键是要找到两个policy之间的权重关系,从而更新Q值。

关于off-policy learning的部分,之后结合TD方法再做分析。

小结

本次blog分析了一下蒙特卡洛方法。这种基于统计学的方法算法简单,但是更多的只能用于虚拟环境能进行无限测试的情况。并且state 状态比较有限,离散的最好。基于这个方法,比如简单的五子棋(棋盘最好小一点),就可以用这个方法来玩玩了。

接下来的blog讲分析TD方法。

声明:

本文的图片截取自:

1 Reinforcement Learning: An Introduction

2 Reinforcement Learning Course by David Silver

时间: 2024-12-24 11:19:24

增强学习Reinforcement Learning经典算法梳理2:蒙特卡洛方法的相关文章

增强学习Reinforcement Learning经典算法梳理3:TD方法

转自:http://blog.csdn.net/songrotek/article/details/51382759 博客地址:http://blog.csdn.net/songrotek/article/category/5419801

Reinforcement Learning Q-learning 算法学习-4

Q-learning 相关的资料 https://www.youtube.com/watch?v=V1eYniJ0Rnk google deepmind 的Q-learning 算法打游戏的一个很酷的视频.请观看 1.http://www.pysnap.com/reinforcement-learning-in-python/ 2.http://www.nervanasys.com/demystifying-deep-reinforcement-learning/ 3.http://wangha

二十世纪最有影响力的十大算法之一: 蒙特卡洛方法

第一部分:算法介绍 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.]1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropol

Reinforcement Learning Q-learning 算法学习-2

在阅读了Q-learning 算法学习-1文章之后. 我分析了这个算法的本质. 算法本质个人分析. 1.算法的初始状态是随机的,所以每个初始状态都是随机的,所以每个初始状态出现的概率都一样的.如果训练的数量够多的 话,就每种路径都会走过.所以起始的Q(X,Y) 肯定是从目标的周围开始分散开来.也就是目标状态为中心的行为分数会最高. 如 Q(1,5)  Q(4,5)  Q(5,5)这样就可以得到第一级别的经验了.并且分数最高. Q(state, action) = R(state, action)

Reinforcement Learning Q-learning 算法学习-3

//Q-learning 源码分析. import java.util.Random; public class QLearning1 { private static final int Q_SIZE = 6; private static final double GAMMA = 0.8; private static final int ITERATIONS = 10; private static final int INITIAL_STATES[] = new int[] {1, 3,

Deep Reinforcement Learning 基础知识(DQN方面)

Introduction 深度增强学习Deep Reinforcement Learning是将深度学习与增强学习结合起来从而实现从Perception感知到Action动作的端对端学习的一种全新的算法.简单的说,就是和人类一样,输入感知信息比如视觉,然后通过深度神经网络,直接输出动作,中间没有hand-crafted工作.深度增强学习具备使机器人实现完全自主的学习一种甚至多种技能的潜力. 虽然将深度学习和增强学习结合的想法在几年前就有人尝试,但真正成功的开端是DeepMind在NIPS 201

机器学习_深度学习_入门经典(永久免费报名学习)

机器学习_深度学习_入门经典(博主永久免费教学视频系列) https://study.163.com/course/courseMain.htm?courseId=1006390023&share=2&shareId=400000000398149 作者座右铭---- 与其被人工智能代替,不如主动设计机器为我们服务. 长期以来机器学习很多教材描述晦涩难懂,大量专业术语和数学公式让学生望而止步.生活中机器学习就在我们身边,谷歌,百度,Facebook,今日头条都运用大量机器学习算法,实现智能

Open source packages on Deep Reinforcement Learning

智能车 self driving car + 强化学习 reinforcement learning + 神经网络 模拟 https://github.com/MorvanZhou/my_research/tree/master/self_driving_research_DQN Reinforcement Learning for Autonomous Driving Obstacle Avoidance using LIDAR https://github.com/peteflorence/

【转载】增强学习(Reinforcement Learning and Control)

增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行拟合.分类.聚类或者降维等操作.然而对于很多序列决策或者控制问题,很难有这么规则的样本.比如,四足机器人的控制问题,刚开始都不知道应该让其动那条腿,在移动过程中,也不知道怎么让机器人自动找到合适的前进方向. 另外如要设计一个下象棋的AI,每走一步实际上也是一个决策过程,虽然对于简单的棋有A*的启发式