【LeetCode】221. Maximal Square

Maximal Square

Given a 2D binary matrix filled with 0‘s and 1‘s, find the largest square containing all 1‘s and return its area.

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

Return 4.

Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.

这题的DP思想部分借鉴了jianchao.li.fighter

思路如下:构建二维数组len,len[i][j]表示以(i,j)为右下角的最大方块的边长。

递推关系为 len[i][j] = min(min(len[i-1][j], len[i][j-1]), len[i-1][j-1]) + 1;

如下图示意:

以(i,j)为右下角的最大方块边长,取决于周围三个位置(i-1,j),(i,j-1),(i-1,j-1),恰好为三者最小边长扩展1位。

若三者最小边长为0,那么(i,j)自成边长为1的方块。

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        if(matrix.empty() || matrix[0].empty())
            return 0;
        int m = matrix.size();
        int n = matrix[0].size();
        int maxLen = 0;
        vector<vector<int> > len(m, vector<int>(n, 0));
        // first row
        for(int i = 0; i < n; i ++)
        {
            len[0][i] = (int)(matrix[0][i]-‘0‘);
            if(len[0][i] == 1)
                maxLen = 1;
        }
        // first col
        for(int i = 0; i < m; i ++)
        {
            len[i][0] = (int)(matrix[i][0]-‘0‘);
            if(len[i][0] == 1)
                maxLen = 1;
        }
        for(int i = 1; i < m; i ++)
        {
            for(int j = 1; j < n; j ++)
            {
                if(matrix[i][j] == ‘0‘)
                    len[i][j] = 0;
                else
                {
                    len[i][j] = min(min(len[i-1][j], len[i][j-1]), len[i-1][j-1]) + 1;
                    maxLen = max(len[i][j], maxLen);
                }
            }
        }
        return maxLen * maxLen;
    }
};

时间: 2024-10-15 12:37:30

【LeetCode】221. Maximal Square的相关文章

leetcode每日解题思路 221 Maximal Square

问题描述: 题目链接:221 Maximal Square 问题找解决的是给出一个M*N的矩阵, 只有'1', '0',两种元素: 需要你从中找出 由'1'组成的最大正方形.恩, 就是这样. 我们看到, 这道题目的标签还是DP, 那么问题的关键就是要找到一个符合判断是否为正方形的递推式. 老套路, 先看基本型, 对于一个2*2的正方形,对于右下角的元素(1,1)而言, 他的上(0,1), 左(1,0), 左上(0,0)三个元素应该都是'1', 如此才能够组成一个合规的正方形: 那么如果是一个3*

【LeetCode】Spiral Matrix II

Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. For example,Given n = 3, You should return the following matrix: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]此题与Spiral Matrix类似,可以用相同的方法解决,相比之下,此题比前一题简单 publ

【leetcode】Generate Parentheses

题目: 给定整数n,返回n对匹配的小括号字符串数组. For example, given n = 3, a solution set is: "((()))", "(()())", "(())()", "()(())", "()()()" 分析: 这种问题的模式是:1)问题的解有多个 ,2)每个解都是由多个有效的 "步骤" 组成的,3)变更以有解的某个或某些"步骤"

【LeetCode】Implement strStr()

Implement strStr() Implement strStr(). Returns a pointer to the first occurrence of needle in haystack, or null if needle is not part of haystack. 标准KMP算法.可参考下文. http://blog.csdn.net/yaochunnian/article/details/7059486 核心思想在于求出模式串前缀与后缀中重复部分,将重复信息保存在n

【LeetCode】Add Two Numbers

You are given two linked lists representing two non-negative numbers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list. Input: (2 -> 4 -> 3) + (5 -> 6 ->

【LeetCode】Pascal&#39;s Triangle

Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] 这题别想用通项公式做,n choose m里面的连乘必然溢出,老老实实逐层用定义做. class Solution { public: vector<vector<

【LeetCode】Copy List with Random Pointer

A linked list is given such that each node contains an additional random pointer which could point to any node in the list or null. Return a deep copy of the list. 思路:第一遍正常复制链表,同时用哈希表保存链表中原始节点和新节点的对应关系,第二遍遍历链表的时候,再复制随机域. 这是一种典型的空间换时间的做法,n个节点,需要大小为O(n

【leetcode】Max Points on a Line (python)

给定一个点,除该点之外的其他所有点中,与该点的关系要么是共线,要么就是共点,也就是两点重合. 共线有三种情况:水平共线,垂直共线,倾斜的共线.合并下这三种情况就是斜率存在的共线和斜率不存在的共线. 那么我们的任务就是针对每个点,找出与其共线的这些情况中,共线最多的点的个数. 注意:最终的结果别忘了加上共点的个数. class Solution: def maxPoints(self, points ): if len( points ) <= 1: return len( points ) ma

【LeetCode】 Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6. More practice: If you have figu