Proxy源码
1,成员变量
?代理类的构造函数参数。默认每个代理类都具有一个invocationHandler的构造方法。(本文代码主要基于jdk 1.7)
/** parameter types of a proxy class constructor */
private static final Class<?>[] constructorParams =
{ InvocationHandler.class };
?缓存代理对象。
private static final WeakCache<ClassLoader, Class<?>[], Class<?>>
proxyClassCache = new WeakCache<>(new KeyFactory(), new ProxyClassFactory());
代理对象的InvacationHandler,每个代理对象都有一个与之对应的Invocationhandler对象。
/**
* the invocation handler for this proxy instance.
* @serial
*/
protected InvocationHandler h;
2,构造方法
?私有构造方法,禁止外部直接通过new关键字生成代理对象。
/**
* Prohibits instantiation.
*/
private Proxy() {
}
protected构造函数。
/**
* Constructs a new {@code Proxy} instance from a subclass
* (typically, a dynamic proxy class) with the specified value
* for its invocation handler.
*
* @param h the invocation handler for this proxy instance
*/
protected Proxy(InvocationHandler h) {
doNewInstanceCheck();
this.h = h;
}
3,newProxyInstance方法
?newProxyInstance方法是我们外部生成代理对象时候主要调用的方法。
@CallerSensitive
public static Object newProxyInstance(ClassLoader loader,
Class<?>[] interfaces,
InvocationHandler h)
throws IllegalArgumentException
{
if (h == null) {//检查InvocationHandler,如果为空,直接抛出异常
throw new NullPointerException();
}
final Class<?>[] intfs = interfaces.clone();
final SecurityManager sm = System.getSecurityManager();
if (sm != null) {
//检查对应的classLoader是否为空,以及接口是否可见
checkProxyAccess(Reflection.getCallerClass(), loader, intfs);
}
/*
* Look up or generate the designated proxy class.
*/
Class<?> cl = getProxyClass0(loader, intfs);
/*
* Invoke its constructor with the designated invocation handler.
*/
try {
final Constructor<?> cons = cl.getConstructor(constructorParams);
final InvocationHandler ih = h;
if (sm != null && ProxyAccessHelper.needsNewInstanceCheck(cl)) {
// create proxy instance with doPrivilege as the proxy class may
// implement non-public interfaces that requires a special permission
return AccessController.doPrivileged(new PrivilegedAction<Object>() {
public Object run() {
return newInstance(cons, ih);
}
});
} else {
return newInstance(cons, ih);
}
} catch (NoSuchMethodException e) {
throw new InternalError(e.toString());
}
}
我们可以看到,最主要的方法在getProxyClass0方法,我们查看其对应的方法。
private static Class<?> getProxyClass0(ClassLoader loader,
Class<?>... interfaces) {
if (interfaces.length > 65535) {
throw new IllegalArgumentException("interface limit exceeded");
}
// If the proxy class defined by the given loader implementing
// the given interfaces exists, this will simply return the cached copy;
// otherwise, it will create the proxy class via the ProxyClassFactory
return proxyClassCache.get(loader, interfaces);
}
我们从代码注释中可以看到,此出主要出缓存中获取代理对象。缓存表中主要存放以类加载器为key的Map对象。我们查看缓存的proxyClassCache的get方法。
public V get(K key, P parameter) {
Objects.requireNonNull(parameter);//校验接口不为空
expungeStaleEntries();
Object cacheKey = CacheKey.valueOf(key, refQueue);//生成缓存对象
// lazily install the 2nd level valuesMap for the particular cacheKey
//内部缓存map中获取对应的对象
ConcurrentMap<Object, Supplier<V>> valuesMap = map.get(cacheKey);
if (valuesMap == null) {//为空
ConcurrentMap<Object, Supplier<V>> oldValuesMap
= map.putIfAbsent(cacheKey,
valuesMap = new ConcurrentHashMap<>());//map中存入对应cacheKey和Map
if (oldValuesMap != null) {
valuesMap = oldValuesMap;
}
}
// create subKey and retrieve the possible Supplier<V> stored by that
// subKey from valuesMap
Object subKey = Objects.requireNonNull(subKeyFactory.apply(key, parameter));
Supplier<V> supplier = valuesMap.get(subKey);
Factory factory = null;
while (true) {
if (supplier != null) {
// supplier might be a Factory or a CacheValue<V> instance
V value = supplier.get();//Supplier实现了一个get接口。主要由Factory实现其具体接口。
if (value != null) {
return value;//存在,则直接返回
}
}
// else no supplier in cache
// or a supplier that returned null (could be a cleared CacheValue
// or a Factory that wasn‘t successful in installing the CacheValue)
// lazily construct a Factory
if (factory == null) {
factory = new Factory(key, parameter, subKey, valuesMap);//创建Factory
}
if (supplier == null) {//Supplier
supplier = valuesMap.putIfAbsent(subKey, factory);
if (supplier == null) {
// successfully installed Factory
supplier = factory;
}
// else retry with winning supplier
} else {
if (valuesMap.replace(subKey, supplier, factory)) {
// successfully replaced
// cleared CacheEntry / unsuccessful Factory
// with our Factory
supplier = factory;
} else {
// retry with current supplier
supplier = valuesMap.get(subKey);
}
}
}
}
此处主要用到了ConcurrentHashMap的相关操作。
我们主要的操作都是通过自定义的Factory的get方法来获取我们对应的缓存对象。
private final class Factory implements Supplier<V> {
private final K key;
private final P parameter;
private final Object subKey;
private final ConcurrentMap<Object, Supplier<V>> valuesMap;
Factory(K key, P parameter, Object subKey,
ConcurrentMap<Object, Supplier<V>> valuesMap) {
this.key = key;
this.parameter = parameter;
this.subKey = subKey;
this.valuesMap = valuesMap;
}
@Override
public synchronized V get() { // serialize access
// re-check
Supplier<V> supplier = valuesMap.get(subKey);
if (supplier != this) {
// something changed while we were waiting:
// might be that we were replaced by a CacheValue
// or were removed because of failure ->
// return null to signal WeakCache.get() to retry
// the loop
return null;
}
// else still us (supplier == this)
// create new value
V value = null;
try {
value = Objects.requireNonNull(valueFactory.apply(key, parameter));
} finally {
if (value == null) { // remove us on failure
valuesMap.remove(subKey, this);
}
}
// the only path to reach here is with non-null value
assert value != null;
// wrap value with CacheValue (WeakReference)
CacheValue<V> cacheValue = new CacheValue<>(value);
// try replacing us with CacheValue (this should always succeed)
if (valuesMap.replace(subKey, this, cacheValue)) {
// put also in reverseMap
reverseMap.put(cacheValue, Boolean.TRUE);
} else {
throw new AssertionError("Should not reach here");
}
// successfully replaced us with new CacheValue -> return the value
// wrapped by it
return value;
}
}
在此处,通过valueFactory的apply方法来生成一个新的代理对象,然后放入缓存。valueFactory为BiFunction接口实例,主要实现有KeyFactory和ProxyClassFactory。ProxyClassFactory是生成代理对象的关键。
/**
* A factory function that generates, defines and returns the proxy class given
* the ClassLoader and array of interfaces.
*/
private static final class ProxyClassFactory
implements BiFunction<ClassLoader, Class<?>[], Class<?>>
{
// prefix for all proxy class names
private static final String proxyClassNamePrefix = "$Proxy";//代理名称前缀
// next number to use for generation of unique proxy class names
private static final AtomicLong nextUniqueNumber = new AtomicLong();//代理名称的下一个名字
@Override
public Class<?> apply(ClassLoader loader, Class<?>[] interfaces) {
- //循环检查接口
Map<Class<?>, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length);
for (Class<?> intf : interfaces) {
/*
* Verify that the class loader resolves the name of this
* interface to the same Class object.
*/
Class<?> interfaceClass = null;
try {
interfaceClass = Class.forName(intf.getName(), false, loader);
} catch (ClassNotFoundException e) {
}
if (interfaceClass != intf) {
throw new IllegalArgumentException(
intf + " is not visible from class loader");
}
/*
* Verify that the Class object actually represents an
* interface.
*/
if (!interfaceClass.isInterface()) {
throw new IllegalArgumentException(
interfaceClass.getName() + " is not an interface");
}
/*
* Verify that this interface is not a duplicate.
*/
if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) {
throw new IllegalArgumentException(
"repeated interface: " + interfaceClass.getName());
}
}
String proxyPkg = null; // package to define proxy class in
/*
* Record the package of a non-public proxy interface so that the
* proxy class will be defined in the same package. Verify that
* all non-public proxy interfaces are in the same package.
*/
for (Class<?> intf : interfaces) {
int flags = intf.getModifiers();
if (!Modifier.isPublic(flags)) {
String name = intf.getName();
int n = name.lastIndexOf(‘.‘);
String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
if (proxyPkg == null) {
proxyPkg = pkg;
} else if (!pkg.equals(proxyPkg)) {
throw new IllegalArgumentException(
"non-public interfaces from different packages");
}
}
}
if (proxyPkg == null) {
// if no non-public proxy interfaces, use com.sun.proxy package
proxyPkg = ReflectUtil.PROXY_PACKAGE + ".";
}
/*
* Choose a name for the proxy class to generate.
*/
long num = nextUniqueNumber.getAndIncrement();
String proxyName = proxyPkg + proxyClassNamePrefix + num;
/*
* Generate the specified proxy class.
*/
byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
proxyName, interfaces);//生成最终的代理对象
try {
return defineClass0(loader, proxyName,
proxyClassFile, 0, proxyClassFile.length);
} catch (ClassFormatError e) {
/*
* A ClassFormatError here means that (barring bugs in the
* proxy class generation code) there was some other
* invalid aspect of the arguments supplied to the proxy
* class creation (such as virtual machine limitations
* exceeded).
*/
throw new IllegalArgumentException(e.toString());
}
}
}
最终的代理对象由ProxyGenerator.generateProxyClass实现。改类的源码SUN并未提供,只能尝试一些反编译技术查看,在此省略。
以上即为JDK实现动态代理的基本原理。我们抛开各种技术细节总结,可以整体的将实现过程概括为下面:
?1)检查内部缓存代码是否存在对应ClassLoader对应的代理对象。存在则直接返回,否则生成。
?2)生成代理对象时,获取对应的Factory视力,如果存在Factory实例,则直接调用其get方法,否则生成Factory实例。
?3)调用Factory的get方法,再调用ProxyClassFactory的apply方法,apply方法调用ProxyGenerator.generateProxyClass方法生成最终的代理对象。在Fatory内部,生成代理对象后,缓存代理对象。
实现自己的Proxy类
看了如上JDK Proxy类的实现,整体结构我们可以有个较为清晰的认识。但是对具体生成代理对象,以为SUN隐藏了内部实现,我们可能较为模糊,下面我们可以自己使用反射来完成一个自己的Proxy类。
个人认为,Proxy内的内部,只是将我们的接口,以及InvocationHandler方法进行组装而已。
?此部分代码参考博客:http://www.ibm.com/developerworks/cn/java/j-lo-proxy1/
?
package com.jing.proxy;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
/**
* 自定义代理,实现对实例进行代理
*
* @author jinglongjun
*
* @param <T>
*/
public final class MyProxy {
private InvocationHandler handler;// 处理器
/**
* 禁止外部访问
*/
private MyProxy() {
}
public MyProxy(InvocationHandler handler) {
this.handler = handler;
}
/**
* 代理执行方法
*
* @param methodName
* 代理方法名称
* @param obj
* 目标对象
* @param args
* 方法执行参数
* @param parameterTypes
* 方法参数类型数组
* @return 方法执行返回值
* @throws Exception
*/
public Object invoke(String methodName, Object obj,
Class<?>[] parameterTypes, Object... args) throws Exception {
if (obj == null)
throw new NullPointerException("目标对象不能为空!");
// 1,获取代理对象方法
Method method = obj.getClass().getMethod(methodName, parameterTypes);// 获取方法
// 2.获取InvocationHandler的invke方法,并执行。此处传入了目标对象的Method对象
Object result = null;
try {
//执行Handler的Invoke方法
result = handler.invoke(this, method, args);
} catch (Throwable e) {
e.printStackTrace();
}
return result;
}
}
调用实例
package com.jing.proxy;
public class TestMyProxy {
public static void main(String[] args) throws Exception {
HelloSubject helloSubject = new HelloSubject();
SubHandler subHandler = new SubHandler(helloSubject);
MyProxy proxy = new MyProxy(subHandler);
Object result = proxy.invoke("doSomething", helloSubject, null, new Object[]{});
System.out.println(result);
}
}
如上,即为整体JDK动态代理的实现,部分代码我写的比较模糊,比如缓存的具体实现步骤,此处可以在后续有时间再深入地学习,毕竟不能一口吃成胖子,还是要循环渐进。
我们通过对源码的分析很容易帮助我们更好的理解动态代理模式。
了解了动态代理的实现原理,后续我们可以分析开源框架中对动态代理模式的应用。
具体后续会根据Spring AOP的代码实现来查看动态代理对框架的作用。
?
版权声明:本文为博主原创文章,未经博主允许不得转载。