10.31 morning

NP(np)
Time Limit:1000ms Memory Limit:64MB
题目描述
LYK 喜欢研究一些比较困难的问题,比如 np 问题。
这次它又遇到一个棘手的 np 问题。问题是这个样子的:有两个数 n 和 p,求 n 的阶乘
对 p 取模后的结果。
LYK 觉得所有 np 问题都是没有多项式复杂度的算法的,所以它打算求助即将要参加 noip
的你,帮帮 LYK 吧!
输入格式(np.in)
输入一行两个整数 n,p。
输出格式(np.out)
输出一行一个整数表示答案。
输入样例
3 4
输出样例
2
数据范围
对于 20%的数据: n,p<=5。
对于 40%的数据: n,p<=1000。
对于 60%的数据: n,p<=10000000。
对于 80%的数据: n<=10^18, p<=10000000。
对于另外 20%的数据: n<=10^18, p=1000000007。
其中大致有 50%的数据满足 n>=p。

暴力90 

剩下的那个点分块打表

/*分块打表 涨姿势了2333*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define inf 10000000
using namespace std;
ll n,p,ans=1,a[110]={0,682498929,491101308,76479948,723816384,67347853,27368307,
625544428,199888908,888050723,927880474,281863274,661224977,623534362,970055531,
261384175,195888993,66404266,547665832,109838563,933245637,724691727,368925948,
268838846,136026497,112390913,135498044,217544623,419363534,500780548,668123525,
128487469,30977140,522049725,309058615,386027524,189239124,148528617,940567523,
917084264,429277690,996164327,358655417,568392357,780072518,462639908,275105629,
909210595,99199382,703397904,733333339,97830135,608823837,256141983,141827977,
696628828,637939935,811575797,848924691,131772368,724464507,272814771,326159309,
456152084,903466878,92255682,769795511,373745190,606241871,825871994,957939114,
435887178,852304035,663307737,375297772,217598709,624148346,671734977,624500515,
748510389,203191898,423951674,629786193,672850561,814362881,823845496,116667533,
256473217,627655552,245795606,586445753,172114298,193781724,778983779,83868974,
315103615,965785236,492741665,377329025,847549272,698611116};
ll init(){
    ll x=0,f=1;char s=getchar();
    while(s<‘0‘||s>‘9‘){if(s==‘-‘)f=-1;s=getchar();}
    while(s>=‘0‘&&s<=‘9‘){x=x*10+s-‘0‘;s=getchar();}
    return x*f;
}
int main()
{
    freopen("np.in","r",stdin);
    freopen("np.out","w",stdout);
    n=init();p=init();
    if(n>=p){
        cout<<"0"<<endl;
        return 0;
    }
    else{
        if(n<=inf)for(int i=1;i<=n;i++){
            ans=ans*i;
            if(ans>=p)ans%=p;
            if(ans==0)break;
        }
        else{
            ans=a[n/inf];
            for(int i=n/inf*inf+1;i<=n;i++){
                ans=ans*i;
                if(ans>=p)ans%=p;
                if(ans==0)break;
            }
        }
    }
    cout<<ans<<endl;
    return 0;
}

看程序写结果(program)
Time Limit:1000ms Memory Limit:64MB
题目描述
LYK 最近在准备 NOIP2017 的初赛,它最不擅长的就是看程序写结果了,因此它拼命地
在练习。
这次它拿到这样的一个程序:
Pascal:
readln(n);
for i:=1 to n do read(a[i]);
for i:=1 to n do for j:=1 to n do for k:=1 to n do for l:=1 to n do
if (a[i]=a[j]) and (a[i]<a[k]) and (a[k]=a[l]) then ans:=(ans+1) mod 1000000007;
writeln(ans);
C++:
scanf(“%d”,&n);
for (i=1; i<=n; i++) scanf(“%d”,&a[i]);
for (i=1; i<=n; i++) for (j=1; j<=n; j++) for (k=1; k<=n; k++) for (l=1; l<=n; l++)
if (a[i]==a[j] && a[i]<a[k] && a[k]==a[l]) ans=(ans+1)%1000000007;
printf(“%d\n”,ans);
LYK 知道了所有输入数据,它想知道这个程序运行下来会输出多少。
输入格式(program.in)
第一行一个数 n,第二行 n 个数,表示 ai。
输出格式(program.out)
一个数表示答案。
输入样例
4
1 1 3 3
输出样例
4
数据范围
对于 20%的数据 n<=50。
对于 40%的数据 n<=200。
对于 60%的数据 n<=2000。
对于 100%的数据 n<=100000, 1<=ai<=1000000000。
其中均匀分布着 50%的数据不同的 ai 个数<=10,对于另外 50%的数据不同的 ai 个
数>=n/10。

模拟

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 100010
#define ll long long
#define mod 1000000007
using namespace std;
ll n,a[maxn],c[maxn],r[maxn],ans,f[maxn];
ll init(){
    ll x=0,f=1;char s=getchar();
    while(s<‘0‘||s>‘9‘){if(s==‘-‘)f=-1;s=getchar();}
    while(s>=‘0‘&&s<=‘9‘){x=x*10+s-‘0‘;s=getchar();}
    return x*f;
}
void Get(){
    f[0]=1;
    for(int i=1;i<=n;i++)
        f[i]=f[i-1]*i%mod;
}
ll Qc(ll x,ll y){
    ll r=1;
    while(y){
        if(y&1)r=r*x%mod;
        y>>=1;x=x*x%mod;
    }
    return r;
}
ll A(ll x,ll y){
    return f[x]*Qc(f[x-y],mod-2)%mod;
}
int main()
{
    freopen("program.in","r",stdin);
    freopen("program.out","w",stdout);
    n=init();Get();
    for(int i=1;i<=n;i++)
        a[i]=init();
    sort(a+1,a+1+n);
    ll now=a[1];c[0]=1;
    for(int i=1;i<=n;){
        while(a[i]==now&&i<=n)c[c[0]]++,i++;
        c[0]++;now=a[i];
    }
    c[0]--;
    for(int i=1;i<=c[0];i++)
        c[i]=(c[i]+A(c[i],2)%mod)%mod;
    for(int i=c[0];i>=1;i--)
        r[i]=(r[i+1]+c[i])%mod;
    for(int i=1;i<=n;i++)
        ans=(ans+c[i]*r[i+1]%mod)%mod;
    cout<<ans<<endl;
    return 0;
}

选数字 (select)
Time Limit:3000ms Memory Limit:64MB
题目描述
LYK 找到了一个 n*m 的矩阵,这个矩阵上都填有一些数字,对于第 i 行第 j 列的位置上
的数为 ai,j。
由于它 AK 了 noip2016 的初赛,最近显得非常无聊,便想到了一个方法自娱自乐一番。
它想到的游戏是这样的:每次选择一行或者一列,它得到的快乐值将会是这一行或者一列的
数字之和。之后它将该行或者该列上的数字都减去 p(之后可能变成负数)。如此,重复 k
次,它得到的快乐值之和将会是它 NOIP2016 复赛比赛时的 RP 值。
LYK 当然想让它的 RP 值尽可能高,于是它来求助于你。
输入格式(select.in)
第一行 4 个数 n,m,k,p.
接下来 n 行 m 列,表示 ai,j。
输出格式(select.out)
输出一行表示最大 RP 值。
输入样例
2 2 5 2
1 3
2 4
输出样例
11
数据范围
总共 10 组数据。
对于第 1,2 组数据 n,m,k<=5。
对于第 3 组数据 k=1。
对于第 4 组数据 p=0。
对于第 5,6 组数据 n=1, m,k<=1000。
对于第 7,8 组数据 n=1, m<=1000, k<=1000000。
对于所有数据 1<=n,m<=1000, k<=1000000, 1<=ai,j<=1000, 0<=p<=100。
样例解释
第一次选择第二列,第二次选择第二行,第三次选择第一行,第四次选择第二行,第五
次选择第一行,快乐值为 7+4+2+0+-2=11。

暴力40 不粘了

正解贪心

/*利用选整整一行或者整整一列的性质 发现行列不影响 那么枚举选了几次行 取max*/
#include<iostream>
#include<cstdio>
#include<queue>
#define maxn 1000010
#define ll long long
#define inf 1e18
using namespace std;
ll n,m,k,p,g[1010][1010],c1[maxn],c2[maxn],ans=-inf,s1[maxn],s2[maxn];
priority_queue<ll>q1,q2;
ll init(){
    ll x=0,f=1;char s=getchar();
    while(s<‘0‘||s>‘9‘){if(s==‘-‘)f=-1;s=getchar();}
    while(s>=‘0‘&&s<=‘9‘){x=x*10+s-‘0‘;s=getchar();}
    return x*f;
}
int main()
{
    freopen("select.in","r",stdin);
    freopen("select.out","w",stdout);
    n=init();m=init();k=init();p=init();
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            g[i][j]=init();
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            c1[i]+=g[i][j];
    for(int i=1;i<=n;i++)
        q1.push(c1[i]);
    for(int j=1;j<=m;j++)
        for(int i=1;i<=n;i++)
            c2[j]+=g[i][j];
    for(int i=1;i<=m;i++)
        q2.push(c2[i]);
    for(int i=1;i<=k;i++){
        ll x=q1.top();
        s1[i]=s1[i-1]+x;q1.pop();
        q1.push(x-p*m);
    }
    for(int i=1;i<=k;i++){
        ll x=q2.top();
        s2[i]=s2[i-1]+x;q2.pop();
        q2.push(x-p*n);
    }
    for(int i=0;i<=k;i++)//枚举选了几次行
        ans=max(ans,s1[i]+s2[k-i]-i*(k-i)*p);
    cout<<ans<<endl;
    return 0;
}

时间: 2024-10-14 01:24:42

10.31 morning的相关文章

背水一战 Windows 10 (31) - 控件(按钮类): ButtonBase, Button, HyperlinkButton, RepeatButton, ToggleButton, AppBarButton, AppBarToggleButton

原文:背水一战 Windows 10 (31) - 控件(按钮类): ButtonBase, Button, HyperlinkButton, RepeatButton, ToggleButton, AppBarButton, AppBarToggleButton [源码下载] 作者:webabcd 介绍背水一战 Windows 10 之 控件(按钮类) ButtonBase Button HyperlinkButton RepeatButton ToggleButton AppBarButto

10.28 rsync工具介绍 - 10.29/10.30 rsync常用选项 - 10.31 rsync通过ssh同步

- 10.28 rsync工具介绍 - 10.29/10.30 rsync常用选项 - 10.31 rsync通过ssh同步 # 10.28 rsync工具介绍 -/A目录 --> /B目录(A目录更新了一个文件,每次更新都需要把A目录拷贝到B目录),如果用cp命令 比较浪费时间,耗费磁盘空间,磁盘压力 读写之类的, -使用rsync -av /etc/passwd /tmp/1.txt -a选项就是包含了好几个选项  ,v 是可视化,可以看到拷贝的过程 ``` [[email protecte

17.10.31&amp;11.01

10.31模拟考试 Prob.1(AC)裸的矩阵幂 Prob.2(WA)(类似括号匹配求合法方案数) 卡特兰数的一个模型运用.可以推出一个式子(推导方法一个erge讲的,一个骚猪讲的) Prob.3(崩溃2个点) 用tarjan求出双联通分量,缩点,然后形成一个无向无环图(本题保证联通,则是一棵树),求树上每一个点到其他点的最远距离. 那个求最远距离,有一个常用方法: 与该点距离最远的点一定是树的直径的一个端点. 我竟然不晓得这个方法!然后就通过旋转树的根等一系列麻烦操作搞这个问题,虽然写了很久

八周二次课(1月30日) 10.28 rsync工具介绍 10.29/10.30 rsync常用选项 10.31 rsync通过ssh同步

八周二次课(1月30日)10.28 rsync工具介绍10.29/10.30 rsync常用选项10.31 rsync通过ssh同步===================================================================================================================================================================rsync命令:是一个远程数据同步工具,可

10.28 rsync工具介绍 10.29/10.30 rsync常用选项 10.31 rsync通

八周二次课 10.28 rsync工具介绍 10.29/10.30 rsync常用选项 10.31 rsync通过ssh同步 10.28 rsync工具介绍 10.29/10.30 rsync常用选项 设置rsync Rsync 进行同步 删除多余文件 排除掉*.txt的文件 参数:-P 参数:-u 10.31 rsync通过ssh同步 原文地址:http://blog.51cto.com/wbyyy/2067136

10.28 rsync工具介绍 10.29/10.30 rsync常用选项 10.31 rsync

10.28 数据备份工具rsyncrsync不仅可以远程同步数据(类似于scp),而且可以本地同步数据(类似于cp),但是与scp和cp的区别在于:如果数据已经存在,不会覆盖以前的数据rsync会先判断数据是否 存在和新数据的差异,只有数据不同时,才会把不同的部分覆盖yum install -y rsync(安装rsync工具) 10.29/10.30 rsync常用选项rsync的常用选项:-a 包含-rtplgoD-r 同步目录的时候也加上(类似于 cp -r)-v 同步的时候显示同步的进程

it&#39;s time to change myself now (2018.10.31)

自16年从新屋熊职校毕业,入职深圳某厂从事云存储两年半了.两年半的时间很快,快的感觉一生都会飞快,两年多一直很忙,忙的几乎忘了自己是否正向改变过. 正向改变,or 积极改变,今年十一回家,与几个好友小聚,开怀畅聊,聊了过去与未来:突然觉得,在公司在岗位上,自己停止不前浑然不知,抽身之后,方被自己的状态震惊到. 从这几个方面: 工作:cs出身,从事云存储,美且名曰分布式存储,而我接触到的业务,非分布式,非传统存储,仅仅是对kv存储以lun或者说卷的管理这个层面.那么问题来了,这个层面究竟有多高的价

离线赛 2019.10.31

2019.10.30 \[ Ameiyo \] A: 地精部落 : Dp , 前缀和优化 Dp B: 深入虎穴 : 图,结论题 C: 教义问答手册 : 分治,分块,Dp A 挺简单的一道 Dp ...看 这个博客 . B 其实可以用 dijsktra 做这道题,但是每次用来更新的都是自己的次小值. 因为当你走到当前点时,老虎会让你不能走最小值,所以是用次小值更新. 每次也是拿次小值最小的点出来更新. ll mi[N][2]; struct NODE { int id; ll w; inline

10.31 模拟赛

10.31 模拟赛 A LIS 考虑每个数字前从 $ m $ 降序构造到 $ a_i $ 即可. #include <iostream> #include<algorithm> #include<cstring> #include<cstdio> #include<vector> using namespace std; #define MAXN 300006 int n , m , k; int A[MAXN]; vector<int&g

2014.10.31我出的模拟赛【天神下凡】

天神下凡(god.*) 背景 Czy找到宝藏获得屠龙宝刀和神秘秘籍!现在他要去找经常ntr他的Jmars报仇…… 题目描述 Czy学会了一招“堕天一击”,他对一个地点发动堕天一击,地面上就会留下一个很大的圆坑.圆坑的周围一圈能量太过庞大,因此无法通过.所以每次czy发动技能都会把地面分割.Jmars拥有好大好大的土地,几十眼都望不到头,所以可以假设土地的大小是无限大.现在czy对他发动了猛烈的攻击,他想知道在泽宇攻击之后他的土地被切成几份了? Czy毕竟很虚,因此圆心都在x坐标轴上.另外,保证所