Y sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1192 Accepted Submission(s): 265
Problem Description
Yellowstar likes integers so much that he listed all positive integers in ascending order,but he hates those numbers which can be written as a^b (a, b are positive integers,2<=b<=r),so he removed them all.Yellowstar calls the sequence
that formed by the rest integers“Y sequence”.When r=3,The first few items of it are:
2,3,5,6,7,10......
Given positive integers n and r,you should output Y(n)(the n-th number of Y sequence.It is obvious that Y(1)=2 whatever r is).
Input
The first line of the input contains a single number T:the number of test cases.
Then T cases follow, each contains two positive integer n and r described above.
n<=2*10^18,2<=r<=62,T<=30000.
Output
For each case,output Y(n).
Sample Input
2 10 2 10 3
Sample Output
13 14
Author
FZUACM
Source
2015 Multi-University Training Contest 1
Recommend
We have carefully selected several similar problems for you: 5390 5389 5388 5387 5386
Mobius函数+迭代
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<functional> #include<iostream> #include<cmath> #include<cctype> #include<ctime> using namespace std; #define For(i,n) for(int i=1;i<=n;i++) #define Fork(i,k,n) for(int i=k;i<=n;i++) #define Rep(i,n) for(int i=0;i<n;i++) #define ForD(i,n) for(int i=n;i;i--) #define RepD(i,n) for(int i=n;i>=0;i--) #define Forp(x) for(int p=pre[x];p;p=next[p]) #define Forpiter(x) for(int &p=iter[x];p;p=next[p]) #define Lson (x<<1) #define Rson ((x<<1)+1) #define MEM(a) memset(a,0,sizeof(a)); #define MEMI(a) memset(a,127,sizeof(a)); #define MEMi(a) memset(a,128,sizeof(a)); #define INF (2139062143) #define F (100000007) #define MAXT (30000+10) #define MAXR (63) typedef long long ll; ll mul(ll a,ll b){return (a*b)%F;} ll add(ll a,ll b){return (a+b)%F;} ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;} void upd(ll &a,ll b){a=(a%F+b%F)%F;} const long long prime[] = {2,3,5,7,11,13,17,19,23,29, 31,37,41,43,47,53,59,61,67, 71,73,79,83,89,97}; class Math { public: ll gcd(ll a,ll b){if (!b) return a;return gcd(b,a%b);} ll abs(ll x){if (x>=0) return x;return -x;} ll exgcd(ll a,ll b,ll &x, ll &y) { if (!b) {x=1,y=0;return a;} ll g=exgcd(b,a%b,x,y); ll t=x;x=y;y=t-a/b*y; return g; } ll pow2(ll a,int b,ll p) //a^b mod p { if (b==0) return 1; if (b==1) return a; ll c=pow2(a,b/2,p); c=c*c%p; if (b&1) c=c*a%p; return c; } ll Modp(ll a,ll b,ll p) //a*x=b (mod p) { ll x,y; ll g=exgcd(a,p,x,y),d; if (b%g) {return -1;} d=b/g;x*=d,y*=d; x=(x+abs(x)/p*p+p)%p; return x; } ll mobius(ll x) { } }S; ll n; int r; int num[600000],Nnum,mobnum[600000],rNnum[600000]; void get() { Nnum=0; for(int i=0;prime[i]<=MAXR;i++) { int m=Nnum; For(j,m) { if (prime[i]*num[j]<=MAXR) { num[++Nnum]=prime[i]*num[j]; mobnum[Nnum]=-mobnum[j]; } } num[++Nnum] = prime[i]; mobnum[Nnum]=-1; rNnum[i]=Nnum; } } ll calc(ll x) { ll ans=0; int rN=0; while (prime[rN+1]<=r) ++rN; For(i,rNnum[rN]) { ans+=-mobnum[i]*(ll)(pow(x+0.1,1.0/num[i])-1); } return x-ans-1; } ll Y(ll n,int r) { ll ans=n; while(1) { ll tmp=calc(ans); if (tmp==n) break; ans+=n-tmp; } return ans; } int main() { // freopen("J.in","r",stdin); // freopen(".out","w",stdout); get(); // For(i,Nnum) cout<<num[i]<<' '<<mobnum[i]<<endl; int T; scanf("%d",&T); while(T--) { scanf("%lld%d",&n,&r); printf("%lld\n",Y(n,r)); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。