散列中线性探测法的实例

以下是用线性探测法构造哈希表的一个具体例子:

已知一组关键字为(39,49,54,38,44,28,68,12,06,77),用除余法构造散列函数,用线性探查法解决冲突构造这组关键字的散列表。
  解答:为了减少冲突,通常令装填因子α<l。这里关键字个数n=10,不妨取m=13,此时α≈0.77,散列表为T[0..12],散列函数为:h(key)=key%13。
     由除余法的散列函数计算出的上述关键字序列的散列地址为(0,10,2,12,5,2,3,12,6,12)。
     前5个关键字插入时,其相应的地址均为开放地址,故将它们直接插入T[0],T[10),T[2],T[12]和T[5]中。
     当插入第6个关键字15时,其散列地址2(即h(15)=15%13=2)已被关键字41(15和41互为同义词)占用。故探查h1=(2+1)%13=3,此地址开放,所以将15放入T[3]中。
     当插入第7个关键字68时,其散列地址3已被非同义词15先占用,故将其插入到T[4]中。
     当插入第8个关键字12时,散列地址12已被同义词38占用,故探查hl=(12+1)%13=0,而T[0]亦被26占用,再探查h2=(12+2)%13=1,此地址开放,可将12插入其中。
     类似地,第9个关键字06直接插入T[6]中;而最后一个关键字51插人时,因探查的地址12,0,1,…,6均非空,故51插入T[7]中。

时间: 2024-07-30 21:00:38

散列中线性探测法的实例的相关文章

数据结构--开放定址法解决散列冲突时几种探测法的比较

开放定址法解决散列冲突时主要有线性探测法,平方探测法和双散列法,以下代码通过插入大量随机数,来统计几种探测法产生冲突的次数. #include<iostream> using namespace std; #define MinTablesize 10 #define Num 3000 typedef unsigned int Index; typedef Index Position; struct Hashtal; typedef struct Hashtal *Hashtable; in

散列碰撞的解决方法——线性探测法(开放寻址法的一种)

function HashTable() { this.table = new Array(137);//137——官方比较好的设置数组大小的值 this.betterHash = betterHash; this.showDistro = showDistro; this.put = put; //this.get=get; } function betterHash(data) { var cons = 31;//此参数的设置是为了避免碰撞 var total = 0; for ( var

数据结构--解决散列冲突,平方探测法

上代码: package com.itany.quadraticprobing; import java.util.LinkedList; import java.util.List; //使用平方探测的散列表 来解决散列时的冲突问题 public class QuadraticProbingHashTable<T> { private static final int DEFAULT_TABLE_SIZE=11; private HashEntry<T>[] array; pri

容器深入研究 --- 散列与散列码(三)

如何覆盖hashCode(): 明白了如何散列之后,编写自己的hashCode()就更有意义了. 首先,你无法控制bucket数组的下标值的产生.这个值依赖于具体的HashMap对象的容量,而容量的改变与容器的充满程度和负载因子有关.hashCode()生成的结果,经过处理后称为桶位的下标. 设计hashCode()时最重要的因素就是:无论何时,对同一个对象调用hashCode()都应该产生同样的值.如果在将一个对象用put()添加进HashMap时产生一个hashCode()值,而用get()

容器深入研究 --- 散列与散列码(一)

通常的: 当标准类库中的类被作用HashMap的键.它用的很好,因为它具备了键所需的全部性质. 当你自己创建用作HashMap的键的类,有可能会忘记在其中放置必须的方法,而这时通常会犯的一个错误. 例如:考虑一个天气系统,将Groundhog对象与Prediction对象联系起来. class Groundhog { protected int number; public Groundhog(int n) { number = n; } public String toString() { r

散列查找的查找插入及冲突处理方法

处理冲突的方法 1.换个位置:开放地址法 2.同一位置的冲突对象组织在一起:链地址法 开放地址法(Open Addressing): 一旦产生了冲突(该地址已有其他元素),就按某种规则去寻找另一空地址 若发生了第i次冲突,试探的下一个地址将增加di, 基本公式: hi(key) = (h(key)+di) mod TableSize (1≤i<TableSize) di决定了不同解决冲突方案:线性探测.平方探测.双散列 线性探测:di = i +1 +2 +3 平方探测:di = ±i^2 +1

HBase Rowkey的散列与预分区设计

转自:http://www.cnblogs.com/bdifn/p/3801737.html 问题导读:1.如何防止热点?2.如何预分区?扩展:为什么会产生热点存储? HBase中,表会被划分为1...n个Region,被托管在RegionServer中.Region二个重要的属性:StartKey与EndKey表示这个Region维护的rowKey范围,当我们要读/写数据时,如果rowKey落在某个start-end key范围内,那么就会定位到目标region并且读/写到相关的数据.简单地说

.NET加密方式解析--散列加密

在现代社会中,信息安全对于每一个人都是至关重要的,例如我们的银行账户安全.支付宝和微信账户安全.以及邮箱等等,说到信息安全,那就必须得提到加密技术,至于加密的一些相关概念,在这里就不说了. 这一次将会主要讲解.NET的加密方式,接下来将会分别介绍散列加密,对称加密,非对称加密等等加密方式在.NET中的应用,本文主要讲解散列加密在.NET中的应用实例. 一.DotNet散列算法概述 说到散列应该都不会陌生,并且首先都会想到MD5加密,但是对于散列更加深入的了解,恐怕知道的人就不会那么多了.散列算法

散列算法与散列码

一.引入 1 /** 2 * Description:新建一个类作为map的key 3 */ 4 public class Groundhog 5 { 6 protected int number; 7 8 public Groundhog(){ 9 } 10 public Groundhog(int number) 11 { 12 this.number = number; 13 } 14 15 @Override 16 public String toString() 17 { 18 ret