由索引引出简单实验几例

由索引引出简单实验几例

***********************************************声明************************************************

原创作品,出自 “深蓝的blog” 博客,欢迎转载,转载时请务必注明出处(http://blog.csdn.net/huangyanlong)。

表述有错误之处,请您留言,不胜感激。

提醒:点击目录,更有助于您的查看。

*****************************************************************************************************

对之前的小例子重新归纳了一下,希望可以帮助对索引有进一步的理解。

【例1】数据量小不需建索引

//如果表的数据量很少,全表扫描和走索引成本相差很小,使用索引是不是就没有必要了。
实验操作:
SQL> SELECT ENAME,JOB,SAL FROM SCOTT.EMP;
//先找到一张小表以作实验,查看表中信息,只有14行

ENAME      JOB          SAL
---------- --------- ------
SMITH      CLERK        800
ALLEN      SALESMAN    1600
WARD       SALESMAN    1250
JONES      MANAGER     2975
MARTIN     SALESMAN    1250
BLAKE      MANAGER     2850
CLARK      MANAGER     2450
SCOTT      ANALYST     3000
KING       PRESIDENT   5000
TURNER     SALESMAN    1500
ADAMS      CLERK       1100
JAMES      CLERK        950
FORD       ANALYST     3000
MILLER     CLERK       1300

已选择14行。
SQL> SET AUTOTRACE ON
SQL> SET AUTOTRACE TRACEONLY
SQL> SELECT * FROM SCOTT.EMP WHERE ENAME='JAMES';
//全表扫描查找JAMES的信息

--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |     1 |    38 |     3   (0)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| EMP  |     1 |    38 |     3   (0)| 00:00:01 |
--------------------------------------------------------------------------

SQL> CREATE INDEX IND_EMP_ENAME ON SCOTT.EMP(ENAME);
//为ENAME列建索引
SQL> SELECT * FROM SCOTT.EMP WHERE ENAME='JAMES';
//走列索引查找JAMES的信息
--------------------------------------------------------------------------------

| Id  | Operation                   | Name          | Rows  | Bytes | Cost (%CPU)| Time     |

-------------------------------------------------------------------------------

|   0 | SELECT STATEMENT            |               |     1 |    38 |     2   (0)| 00:00:01 |

|   1 |  TABLE ACCESS BY INDEX ROWID| EMP           |     1 |    38 |     2   (0)| 00:00:01 |

|*  2 |   INDEX RANGE SCAN          | IND_EMP_ENAME |     1 |       |     1   (0)| 00:00:01 |
--------------------------------------------------------------------------------
//全表扫描成本是3%,走索引成本是2%
//从以上实验发现,在表的数据量很小的情况下,全表扫描和走索引成本上相差不大。

【例2】全表扫描IO成本低于使用索引情况

**************************************************************************
举一个例子,不恰当的使用索引,比用全表扫描的的IO成本更加高。
**************************************************************************
解答:
    思路:创建一组rowid是散落在多个表数据块中的索引,这样由于索引列数据的分布情况和索引中的顺序差异很大,致使通过全表扫表比走索引更能降低IO的使用成本。
操作如下:
SQL> CREATE TABLE TAB_HYL AS SELECT * FROM DBA_OBJECTS;
//创建了一个TAB_HYL表以作实验
SQL> ANALYZE TABLE TAB_HYL COMPUTE STATISTICS;
//分析这张TAB_HYL实验表
SQL> SELECT NUM_ROWS,BLOCKS FROM USER_TABLES WHERE TABLE_NAME ='TAB_HYL';
//查找出实验表上的行数、块数

  NUM_ROWS     BLOCKS
---------- ----------
     72606       1033

SQL> SELECT 72606/1033 FROM DUAL;
//计算平均每个块中的行数为70行

72606/1033
----------
 70.286544

SQL> DROP TABLE TAB_HYL PURGE;
//删除这张表,这张表就是为了计算出每块所占的行数,从而对其进行构建完成实验
SQL> CREATE TABLE TAB_HYL AS SELECT * FROM DBA_OBJECTS WHERE ROWNUM<=70;
//重新创建实验表让它装入70行形成第一个块
SQL> INSERT INTO TAB_HYL SELECT * FROM TAB_HYL;
//复制相同的70行插到实验表中,即实验表中共有140行数据,两个块
SQL> /
//再次执行相同操作,但此时基准的实验表为140行,因此第三次插入了140行数据,即现在实验表有280行数据
SQL> /
//按照上面的方法以下连续创建,形成多个块,让每个块中都有相同的键值而形成一组实验用的ROWID
SQL> /
SQL> /
SQL> /
SQL> /
SQL> COMMIT;
SQL> CREATE INDEX IND_H1 ON TAB_HYL(OBJECT_ID);
//创建实验表中OBJECT_ID列的索引,之后通过该列值进行查询,来说明查询的成本
SQL> ANALYZE TABLE TAB_HYL COMPUTE STATISTICS; //分析一下实验表
SQL> SELECT NUM_ROWS,BLOCKS FROM USER_TABLES WHERE TABLE_NAME ='TAB_HYL';
//查看一下此时实验表的行数、块数已经达到实验准备条件,可以开始试验了

  NUM_ROWS     BLOCKS
---------- ----------
      8960        103

SQL> SET AUTOTRACE ON
SQL> SET AUTOTRACE TRACEONLY
//设定跟踪
SQL> SELECT * FROM TAB_HYL WHERE OBJECT_ID=70;
//通过上面创建了索引的列来查找,得到下面的分析结果,记住cpu的成本为30,并且数据库自动完成的是走全表扫描,说明数据库已经判断出什么方式查询,成本更低了。

----------------------------------------------------------------------

| Id  | Operation         | Name    | Rows  | Bytes | Cost (%CPU)| Time     |

----------------------------------------------------------------------

|   0 | SELECT STATEMENT  |         |   128 | 10112 |    30   (0)| 00:00:01 |

|*  1 |  TABLE ACCESS FULL| TAB_HYL |   128 | 10112 |    30   (0)| 00:00:01 |

----------------------------------------------------------------------
//之后我们人为让查询走索引再看一下分析结果。
SQL> SELECT /*+INDEX(TAB_HYL IND_H1)*/ * FROM TAB_HYL WHERE OBJECT_ID=70;
//强制查询走索引,输出一下结果,看到成本是102,要远高于全表扫描的成本(全表扫描是30,见上表)。

----------------------------------------------------------------------
| Id  | Operation                   | Name    | Rows  | Bytes | Cost (%CPU)| Time
----------------------------------------------------------------------
|   0 | SELECT STATEMENT            |         |   128 | 10112 |   102(0)| 00:00:02 |

|   1 |  TABLE ACCESS BY INDEX ROWID| TAB_HYL |   128 | 10112 |   102(0)| 00:00:02 |

|*  2 |   INDEX RANGE SCAN          | IND_H1  |   128 |       |     1(0)| 00:00:01 |
----------------------------------------------------------------------
通过以上实验说明,当索引列数据的分布情况和索引中的顺序差异很大这种情况出现时,做索引范围扫描效率偏低。

【例3】构造表时集簇因子数分别为接近块数、接近行数

**************************************************************************
建两张表,各建一个索引。要求A表的索引集簇因子接近表块数,B表的索引集簇因子接近表行数。
**************************************************************************
(一)、创建A表:索引集簇因子接近表块数
操作:
SQL> CREATE TABLE TAB_HYL AS SELECT * FROM DBA_OBJECTS;
//先创建了一个TAB_HYL表以作实验源表,为了通过这个表分析出表中一个块所占的行数
SQL> ANALYZE TABLE TAB_HYL COMPUTE STATISTICS;
//分析这张TAB_HYL实验表
SQL> SELECT NUM_ROWS,BLOCKS FROM USER_TABLES WHERE TABLE_NAME ='TAB_HYL';
//查找出实验表上的行数、块数

  NUM_ROWS     BLOCKS
---------- ----------
     72606       1033

SQL> SELECT 72606/1033 FROM DUAL;
//计算平均每个块中的行数为70行

72606/1033
----------
 70.286544

SQL> DROP TABLE TAB_HYL PURGE;
//删除这张表
SQL> CREATE TABLE TAB_HYL AS SELECT * FROM DBA_OBJECTS WHERE ROWNUM<=70;
//重新创建实验表让它装入70行形成第一个块
SQL> INSERT INTO TAB_HYL SELECT * FROM TAB_HYL;
//复制相同的70行插到实验表中,即实验表中共有140行数据,两个块
SQL> /
//再次执行相同操作,但此时基准的实验表为140行,因此第三次插入了140行数据,即现在实验表有280行数据
SQL> /
//按照上面的方法以下连续创建,这是为了构造实验表的集簇因子
SQL> /
SQL> /
SQL> /
SQL> /
SQL> COMMIT;
SQL> CREATE TABLE TAB_A AS SELECT * FROM TAB_HYL ORDER BY OBJECT_ID;
//根据实验表创建出表A,表A是通过OBJECT_ID排序的,因此就得到了键值相同的分布较集中的块
SQL> CREATE INDEX IND_H1 ON TAB_A(OBJECT_ID);
//创建A表中OBJECT_ID列的索引
SQL> ANALYZE TABLE TAB_A COMPUTE STATISTICS;
//分析一下A表
SQL> SELECT NUM_ROWS,BLOCKS FROM USER_TABLES WHERE TABLE_NAME = 'TAB_A';

  NUM_ROWS     BLOCKS
---------- ----------
      8960        102

SQL> SELECT BLEVEL,LEAF_BLOCKS,DISTINCT_KEYS,AVG_LEAF_BLOCKS_PER_KEY,CLUSTERING_FACTOR
  2  FROM USER_INDEXES
  3  WHERE INDEX_NAME = 'IND_H1';
//查看A表索引列的b-tree级别、叶的块数、不同的key值、平均每个key所占的叶块的数量、聚集的因子

 BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY CLUSTERING_FACTOR
------- ----------- ------------- -----------------------  -----------------
      1          18            70                       1                102

//得到了A表索引列的集簇因子数(102)与上面的A表的块数(102)是相同的。

(二)、创建B表:索引集簇因子接近表行数
操作:
SQL> CREATE TABLE TAB_HYL AS SELECT * FROM DBA_OBJECTS;//创建了一个实验表以作实验
SQL> ANALYZE TABLE TAB_HYL COMPUTE STATISTICS;//分析这张TAB_HYL实验表
SQL> SELECT NUM_ROWS,BLOCKS FROM USER_TABLES WHERE TABLE_NAME ='TAB_HYL';//查找出实验表上的行数、块数

  NUM_ROWS     BLOCKS
---------- ----------
     72606       1033

SQL> SELECT 72606/1033 FROM DUAL;//计算平均每个块中的行数为70行

72606/1033
----------
 70.286544

SQL> DROP TABLE TAB_HYL PURGE;//删除这张表
SQL> CREATE TABLE TAB_B AS SELECT * FROM DBA_OBJECTS WHERE ROWNUM<=70;//创建B表让它装入70行形成第一个块
SQL> INSERT INTO TAB_B SELECT * FROM TAB_B;//复制相同的70行插到B表中,即B表中共有140行数据,两个块
SQL> /    //再次执行相同操作,但此时基准的B表为140行,因此第三次插入了140行数据,即现在B表有280行数据
SQL> /    //按照上面的方法以下连续创建,这是为了构造B表的集簇因子
SQL> /
SQL> /
SQL> /
SQL> /
SQL> COMMIT;
SQL> CREATE INDEX IND_H2 ON TAB_B(OBJECT_ID);//创建B表中OBJECT_ID列的索引
SQL> ANALYZE TABLE TAB_B COMPUTE STATISTICS; //分析一下B表
SQL> SELECT NUM_ROWS,BLOCKS FROM USER_TABLES WHERE TABLE_NAME ='TAB_B';//查看一下此时B表的行数、块数

  NUM_ROWS     BLOCKS
---------- ----------
      8960        103

SQL> SELECT BLEVEL,LEAF_BLOCKS,DISTINCT_KEYS,AVG_LEAF_BLOCKS_PER_KEY,CLUSTERING_FACTOR
  2  FROM USER_INDEXES
  3  WHERE INDEX_NAME = 'IND_H2';

//查看B表索引列的b-tree级别、叶的块数、不同的key值、平均每个key所占的叶块的数量、集簇因子

 BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY  CLUSTERING_FACTOR

------- ----------- ------------- -----------------------  -----------------

      1          18            70                       1               7070

//B表索引列的集簇因子(7070)和B表中的行数(8960)相对接近.           

【例4】有关索引监控

**************************************************************************
对一张表的索引开监控,看是否有使用到。
**************************************************************************
会话A:
SQL> ALTER INDEX IND_H1 MONITORING USAGE;

//对上面练习中用到的IND_H1索引开监控

SQL> SELECT * FROM V$OBJECT_USAGE;

//通过查看V$OBJECT_USAGE视图查看对IND_H1索引的监控信息,MON为YES代表已经开监控了,当前没有人用到

INDEX_NAME          TABLE_NAME             MON USE  START_MONITORING     END_MONITORING
------------------- ---------------------- --- ---  -------------------  -------------------
IND_H1              TAB_A	           YES NO   03/18/2014 16:54:29

会话B:
SQL> SET AUTOTRACE ON;
//开监控,确认下面的操作是走索引的

SQL> SELECT * FROM TAB_A WHERE OBJECT_ID=70;
//使用带索引列查询,分析结果如下
--------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |        |   128 | 10112 |     3   (0)| 00:0
0:01 |

|   1 |  TABLE ACCESS BY INDEX ROWID| TAB_A  |   128 | 10112 |     3   (0)| 00:0
0:01 |

|*  2 |   INDEX RANGE SCAN          | IND_H1 |   128 |       |     1   (0)| 00:0
0:01 |
--------------------------------------------------------------------------------

会话A:
SQL> SELECT * FROM V$OBJECT_USAGE;

//再次通过V$OBJECT_USAGE视图查看对IND_H1索引的监控信息,MON为YES代表已经开监控了,USE为YES代表当前有人在使用

INDEX_NAME          TABLE_NAME             MON USE  START_MONITORING     END_MONITORING
------------------- ---------------------- --- ---  -------------------  -------------------
IND_H1              TAB_A	           YES YES  03/18/2014 16:54:29

***********************************************声明************************************************

原创作品,出自 “深蓝的blog” 博客,欢迎转载,转载时请务必注明出处(http://blog.csdn.net/huangyanlong)。

表述有错误之处,请您留言,不胜感激。

提醒:点击目录,更有助于您的查看。

*****************************************************************************************************

时间: 2024-12-16 00:01:55

由索引引出简单实验几例的相关文章

一则简单演示样例看Oracle的“无私”健壮性

Oracle的强大之处就在于他能总帮助让你选择正确的运行计划,即使你给了它错误的指示. 实验: 1. 创建測试表: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYmlzYWw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" > 收集统计信息: 创建B树索引: 2. 运行select id from tbl_plan;查看它的运行计划: 由于创建了

SDN入门,简单实验

网上大多数视频教程都是用virtualbox做演示的,我的电脑不知道怎么回事无法正常启动,于是用性能更好的vmware workstation来做实验,今天终于搞定,装上了MiniNet. 从www.openflow.org的tutorial下载mininet的2.0版本,里面有一个简单搭好的topo host2-----Switch0-----host3 VMware载入mininet,用户名和密码均为openflow. Step1  启动mininet Step2   查询网络情况 node

[Python Fabric] [SSH] Mac OS X 10.9 + Vagrant虚拟环境使用Python Fabric进行SSH远程登录的简单实验

1. ssh客户端生成key 1 $ ssh-keygen -t rsa -b 4096 2 Generating public/private rsa key pair. 3 Enter file in which to save the key (/Users/(username)/.ssh/id_rsa): vagrantid_rsa 4 Enter passphrase (empty for no passphrase): 5 Enter same passphrase again: 6

Android中关于JNI 的学习(零)简单的样例,简单地入门

Android中JNI的作用,就是让Java可以去调用由C/C++实现的代码,为了实现这个功能.须要用到Anrdoid提供的NDK工具包,在这里不讲怎样配置了,好麻烦,配置了好久. . . 本质上,Java去调用C/C++的代码事实上就是去调用C/C++提供的方法.所以,第一步,我们要创建一个类,而且定义一个Native方法.例如以下: JniTest类: public class JniTest { public native String getTestString(); } 能够看到,在这

[hadoop系列]Pig的安装和简单演示样例

inkfish原创,请勿商业性质转载,转载请注明来源(http://blog.csdn.net/inkfish ).(来源:http://blog.csdn.net/inkfish) Pig是Yahoo!捐献给Apache的一个项目,眼下还在Apache孵化器(incubator)阶段,眼下版本号是v0.5.0.Pig是一个基于Hadoop的大规模数据分析平台,它提供的SQL-like语言叫Pig Latin,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运

简单的单例类和智能指针

1.一个简单的单例类: class Singleton { public: static Singleton *getInstance() { if(pInstance_ == NULL){ mutex_.lock(); if(pInstance_ == NULL){ sleep(1); pInstance_ = new Singleton; } mutex_.unlock(); } return pInstance_; } private: Singleton(){} static Singl

Java 多线程编程两个简单的样例

/** * @author gao */ package gao.org; public class RunnableDemo implements Runnable{ @Override public void run() { // TODO Auto-generated method stub for(int i=0;i<10;i++){ System.out.println("新线程输出:"+i); } } public static void main(String []

JBoss 系列九十六:JBoss MSC - 简介及一个简单演示样例

什么是 JBoss MSC JBoss MSC 即 JBoss Modular Service Container,是第三代 JBoss 产品 JBoss 7和WildFfly的内核,JBoss MSC 替换了之前的 JMX Kernel 和 MicroContainer,它主要特定能够总结例如以下三点: 高并发容器(A highly concurrent state machine) 无多相位,设计简单(No multiple phases, much simpler) 不依赖 JMX 和 J

Android中关于JNI 的学习(四)简单的样例,温故而知新

在第零篇文章简单地介绍了JNI编程的模式之后.后面两三篇文章,我们又针对JNI中的一些概念做了一些简单的介绍,也不知道我究竟说的清楚没有.但相信非常多童鞋跟我一样.在刚開始学习一个东西的时候,入门最好的方式就是一个现成的样例来參考,慢慢研究,再学习概念.再回过来研究代码,加深印象,从而開始慢慢掌握. 今天我们就再来做一个小Demo.这个样例会比前面略微复杂一点.可是假设阅读过前面几篇文章的话,理解起来也还是非常easy的. 非常多东西就是这样.未知的时候非常可怕.理解了就非常easy了. 1)我