Magic Number(Levenshtein distance算法)

Magic Number

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status Practice HDU 4323

Description

There are many magic numbers whose lengths are less than 10. Given some queries, each contains a single number, if the Levenshtein distance (see below) between the number in the query and a magic number is no more than a threshold, we call the magic number is the lucky number for that query. Could you find out how many luck numbers are there for each query?

Levenshtein distance (from Wikipedia http://en.wikipedia.org/wiki/Levenshtein_distance): 
In information theory and computer science, the Levenshtein distance is a string metric for measuring the amount of difference between two sequences. The term edit distance is often used to refer specifically to Levenshtein distance. 
The Levenshtein distance between two strings is defined as the minimum number of edits needed to transform one string into the other, with the allowable edit operations being insertion, deletion, or substitution of a single character. It is named after Vladimir Levenshtein, who considered this distance in 1965. 
For example, the Levenshtein distance between "kitten" and "sitting" is 3, since the following three edits change one into the other, and there is no way to do it with fewer than three edits: 
1.kitten → sitten (substitution of ‘s‘ for ‘k‘) 
2.sitten → sittin (substitution of ‘i‘ for ‘e‘) 
3.sittin → sitting (insertion of ‘g‘ at the end).

Input

There are several test cases. The first line contains a single number T shows that there are T cases. For each test case, there are 2 numbers in the first line: n (n <= 1500) m (m <= 1000) where n is the number of magic numbers and m is the number of queries. 
In the next n lines, each line has a magic number. You can assume that each magic number is distinctive. 
In the next m lines, each line has a query and a threshold. The length of each query is no more than 10 and the threshold is no more than 3.

Output

For each test case, the first line is "Case #id:", where id is the case number. Then output m lines. For each line, there is a number shows the answer of the corresponding query.

Sample Input

1
5 2
656
67
9313
1178
38
87 1
9509 1

Sample Output

Case #1:
1
0

Levenshtein distance算法

s[i] == t[j] :dp[i][j] = min (dp[i-1][j-1] , min(dp[i-1][j] , dp[i][j-1]) + 1) ;

s[i] != t[j]: dp[i][j] = min (dp[i-1][j-1] , dp[i-1][j] , dp[i][j-1]) + 1 ;

其实就是个dp.

这种复杂度为O(n*m) ;

还有一种复杂度为O(n*k),k为最大改变次数,n为字符串长度。

时间: 2024-10-12 19:22:09

Magic Number(Levenshtein distance算法)的相关文章

java文本相似度计算(Levenshtein Distance算法(中文翻译:编辑距离算法))----代码和详解

算法代码实现: package com.util; public class SimFeatureUtil { private static int min(int one, int two, int three) { int min = one; if (two < min) { min = two; } if (three < min) { min = three; } return min; } public static int ld(String str1, String str2)

字符串相似度算法——Levenshtein Distance算法

Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大. 算法实现原理图解: a.首先是有两个字符串,这里写一个简单的 abc 和 abe b.将字符串想象成下面的结构. A 处 是一个标记,为了方便讲解,不是这个表的内容.   abc a b c abe 0 1 2 3 a 1 A处  

编辑距离算法详解:Levenshtein Distance算法

算法基本原理:假设我们可以使用d[ i , j ]个步骤(可以使用一个二维数组保存这个值),表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,那么,在最基本的情况下,即在i等于0时,也就是说串s为空,那么对应的d[0,j] 就是 增加j个字符,使得s转化为t,在j等于0时,也就是说串t为空,那么对应的d[i,0] 就是 减少 i个字符,使得s转化为t. 然后我们考虑一般情况,加一点动态规划的想法,我们要想得到将s[1..i]经过最少次数的增加,删除,或者替换操作就转变为

Levenshtein distance 编辑距离算法

这几天再看 virtrual-dom,关于两个列表的对比,讲到了 Levenshtein distance 距离,周末抽空做一下总结. Levenshtein Distance 介绍 在信息理论和计算机科学中,Levenshtein 距离是用于测量两个序列之间的差异量(即编辑距离)的度量.两个字符串之间的 Levenshtein 距离定义为将一个字符串转换为另一个字符串所需的最小编辑数,允许的编辑操作是单个字符的插入,删除或替换. 例子 ‘kitten’和’sitten’之间的 Levensht

Levenshtein Distance莱文斯坦距离算法来计算字符串的相似度

转 理解起来不难,但是很实用. 核心公式就是下面:             (1) 1.百度百科介绍: Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数. 许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance. 2.用途 模糊查询 3.实现过程 a.首先是有两个字符串,这里写一个简单的 abc和abe b.将

优化后的Levensthein distance算法实现

在上一篇文章Levenshtein distance算法实现中,笔者已经讲解了一般最小编辑距离的算法.该算法采用动态规划,时间复杂度是O(m*n),m,n分别为两个字符串的长度,而空间复杂度也是O(m*n),如果使用int作为矩阵元素的类型,则矩阵的占用空间大小为sizeof(int)*m*n,假如两个字符串的长度均为10000个字符,则矩阵大小为400MB,相当可观.参考一个快速.高效的Levenshtein算法实现,笔者重新实现了一遍Levenshtein distance算法,其主要思想就

C#实现Levenshtein distance最小编辑距离算法

Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑距离,有下列的公式. 其中d[i-1,j]+1代表字符串s2插入一个字母才与s1相同,d[i,j-1]+1代表字符串s1删除一个字母才与s2相同,然后当xi=yj时,不需要代价,所以和上一步d[i-1,j-1]代价相同,否则+1,接着d[i,j]是以上三者中最小的一项. 算法实现(C#): 假设两个

字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)

在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k→s) sittin (e→i) sitting (→g) 俄罗斯科学家V

计算两组标签相似度算法——levenshtein distance 编辑距离算法

标签在数据分析中起到很重要的作用,给用户打标签,给商品打标签,给新闻打标签,好的标签可以为我们后期分析数据时提供很大的便利.有时我们需要计算两个对象之间标签的相似度.目前学习的算法是levenshtein distance 编辑距离算法. 代码示例: //标签相似度 public static double levenshtein(String s1, String s2) { System.out.println("levenshtein str1:"+s1+" str2: