算法9---二叉树的遍历不用栈和递归

二叉树的遍历不用栈和递归

转自:ACM之家 http://www.acmerblog.com/inorder-tree-traversal-without-recursion-and-without-stack-5988.html

我们知道,在深度搜索遍历的过程中,之所以要用递归或者是用非递归的栈方式,参考二叉树非递归中序遍历,都是因为其他的方式没法记录当前节点的parent,而如果在每个节点的结构里面加个parent 分量显然是不现实的,那么Morris是怎么解决这一问题的呢?好吧,他用得很巧妙,实际上是用叶子节点的空指针来记录当前节点的位置,然后一旦遍历到了叶子节点,发现叶子节点的右指针指向的是当前节点,那么就认为以当前节点的左子树已经遍历完成。Morris 遍历正是利用了线索二叉树 的思想。

以inorder为例,初始化当前节点为root,它的遍历规则如下:

- 如果当前节点为空,程序退出。

- 如果当前节点非空,

- 如果当前节点的左儿子为空,那么输出当前节点,当前节点重置为当前节点的右儿子。

- 如果当前节点的左儿子非空,找到当前节点左子树的最右叶子节点(此时最右节点的右儿子有两种情况,一种是指向当前节点,一种是为空,你也许感到奇怪,右节点的右儿子怎么可能非空,注意,这里的最右叶子节点只带的是原树中的最右叶子节点。),若其最右叶子节点为空,令其指向当前节点,将当前节点重置为其左儿子,若其最右节点指向当前节点,输出当前节点,将当前节点重置为当前节点的右儿子,并恢复树结构,即将最右节点的右节点再次设置为NULL

 1 #include<stdio.h>
 2 #include<stdlib.h>
 3
 4 struct tNode
 5 {
 6    int data;
 7    struct tNode* left;
 8    struct tNode* right;
 9 };
10
11 void MorrisTraversal(struct tNode *root)
12 {
13   struct tNode *current,*pre;
14
15   if(root == NULL)
16      return;
17
18   current = root;
19   while(current != NULL)
20   {
21     if(current->left == NULL)
22     {
23       printf(" %d ", current->data);
24       current = current->right;
25     }
26     else
27     {
28       /* 找到current的前驱节点 */
29       pre = current->left;
30       while(pre->right != NULL && pre->right != current)
31         pre = pre->right;
32
33       /* 将current节点作为其前驱节点的右孩子 */
34       if(pre->right == NULL)
35       {
36         pre->right = current;
37         current = current->left;
38       }
39
40       /* 恢复树的原有结构,更改right 指针 */
41       else
42       {
43         pre->right = NULL;
44         printf(" %d ",current->data);
45         current = current->right;
46       } /* End of if condition pre->right == NULL */
47     } /* End of if condition current->left == NULL*/
48   } /* End of while */
49 }
50
51 struct tNode* newtNode(int data)
52 {
53   struct tNode* tNode = (struct tNode*)
54                        malloc(sizeof(struct tNode));
55   tNode->data = data;
56   tNode->left = NULL;
57   tNode->right = NULL;
58
59   return(tNode);
60 }
61
62 /* 测试*/
63 int main()
64 {
65
66   /* 构建树结构如下:
67             1
68           /   69         2      3
70       /  71     4     5
72   */
73   struct tNode *root = newtNode(1);
74   root->left        = newtNode(2);
75   root->right       = newtNode(3);
76   root->left->left  = newtNode(4);
77   root->left->right = newtNode(5);
78
79   MorrisTraversal(root);
80    return 0;
81 }
时间: 2024-12-24 07:09:38

算法9---二叉树的遍历不用栈和递归的相关文章

【转】算法之二叉树各种遍历

http://blog.csdn.net/sjf0115/article/details/8645991 树形结构是一类重要的非线性数据结构,其中以树和二叉树最为常用. 二叉树是每个结点最多有两个子树的有序树.通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree).二叉树常被用作二叉查找树和二叉堆或是二叉排序树.二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒.二叉树的第i层至多有2的 i -1次方个结点:

算法之二叉树各种遍历

树形结构是一类重要的非线性数据结构,当中以树和二叉树最为经常使用. 二叉树是每一个结点最多有两个子树的有序树.通常子树的根被称作"左子树"(left subtree)和"右子树"(right subtree).二叉树常被用作二叉查找树和二叉堆或是二叉排序树.二叉树的每一个结点至多仅仅有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒.二叉树的第i层至多有2的 i -1次方个结点:深度为k的二叉树至多有2^(k) -1个结点:对不论什么一棵二叉树

算法之二叉树各种遍历 (转)

树形结构是一类重要的非线性数据结构,其中以树和二叉树最为常用. 二叉树是每个结点最多有两个子树的有序树.通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree).二叉树常被用作二叉查找树和二叉堆或是二叉排序树.二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒.二叉树的第i层至多有2的 i -1次方个结点:深度为k的二叉树至多有2^(k) -1个结点:对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,

转 算法之二叉树各种遍历

原文:http://blog.csdn.net/sjf0115/article/details/8645991 树形结构是一类重要的非线性数据结构,其中以树和二叉树最为常用. 二叉树是每个结点最多有两个子树的有序树.通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree).二叉树常被用作二叉查找树和二叉堆或是二叉排序树.二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒.二叉树的第i层至多有2的 i -1次方个

经典白话算法之二叉树各种遍历

树形结构是一类重要的非线性数据结构,其中以树和二叉树最为常用. 二叉树是每个结点最多有两个子树的有序树.通常子树的根被称作"左子树"(left subtree)和"右子树"(right subtree).二叉树常被用作二叉查找树和二叉堆或是二叉排序树.二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒.二叉树的第i层至多有2的 i -1次方个结点:深度为k的二叉树至多有2^(k) -1个结点:对任何一棵二叉树T,如果其终端

【数据结构与算法】二叉树深度遍历(非递归)

据说这个笔试面试的时候非常easy考到,所以写到这里. 图示 代码实现 /** * 源代码名称:TreeIteratorNoRecursion.java * 日期:2014-08-23 * 程序功能:二叉树深度遍历(非递归) * 版权:[email protected] * 作者:A2BGeek */ import java.util.Stack; public class TreeIteratorNoRecursion { class TreeNode<T> { private T mNod

【数据结构与算法】二叉树深度遍历(递归)

二叉树的深度遍历用递归的话就没有什么好说的了. 代码实现 /** * 源码名称:TreeIteratorRecursion.java * 日期:2014-08-23 * 程序功能:二叉树深度遍历 * 版权:[email protected] * 作者:A2BGeek */ public class TreeIteratorRecursion { class TreeNode<T> { private T mNodeData; private TreeNode<T> mLeftChi

【数据结构与算法】二叉树广度遍历

二叉树的广度遍历想想还是比較简单的.利用队列存储当前结点的左儿子和右儿子用作未来的訪问. 代码实现 /** * 源代码名称:TreeBFS.java * 日期:2014-08-25 * 程序功能:二叉树广度遍历 * 版权:[email protected] * 作者:A2BGeek */ import java.util.LinkedList; import java.util.Queue; public class TreeBFS { class TreeNode<T> { private

【每日算法】二叉树的遍历

二叉树特点 每个节点最多有两棵子树: 二叉树是有序的,即区分左右子树的次序. 完全二叉树 叶子节点只能出现在最下两层,且最下层的叶子节点都集中在二叉树左侧连续的位置. 如果有度为1的节点,只可能有一个,且该节点只有左孩子. 二叉树实现 这里只讲二叉链表实现,使用C++. template<class DataType> struct BiNode { DataType data; BiNode<DataType> *lchild, *rchild; }; template<c