转:
http://www.360doc.com/content/14/0315/11/14268060_360747574.shtml
http://semocean.com/%E6%8E%A8%E8%8D%90%E7%B3%BB%E7%BB%9F%E7%BB%8F%E5%85%B8%E8%AE%BA%E6%96%87%E6%96%87%E7%8C%AE%E5%8F%8A%E8%B5%84%E6%96%99/
列了一些之前设计开发百度关键词搜索推荐引擎时, 参考过的论文, 书籍, 以及调研过的推荐系统相关的工具;同时给出参加过及未参加过的业界推荐引擎应用交流资料(有我网盘的链接), 材料组织方式参考了厂里部分同学的整理。
因为推荐引擎不能算是一个独立学科,它与机器学习,数据挖掘有天然不可分的关系,所以同时列了一些这方面有用的工具及书籍,希望能对大家有所帮助。
一. Survey方面的文章及资料
- Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. Knowledge and Data Engineering, IEEE Transactions on, 2005, 17(6): 734-749. 2005年的state-of-the-art的推荐综述,按照content-based, CF, Hybrid的分类方法进行组织,并介绍了推荐引擎设计时需要关注的特性指标,内容非常全。
- Marlin B. Collaborative filtering: A machine learning perspective[D]. University of Toronto, 2004. 从传统机器学习的分类角度来介绍推荐算法,有一定机器学习背景的人来看该文章的话, 会觉得写得通俗易懂
- Koren Y, Bell R. Advances in collaborative filtering[M]//Recommender Systems Handbook. Springer US, 2011: 145-186. RSs Handbook中专门讲述协同过滤的一章,其中对近年协同过滤的一些重要突破进行了介绍,包括因式分解,时间相关推荐,基于近邻的推荐以及多种方法的融合,内部不多,但其中引用的论文值得细看
- Su X, Khoshgoftaar T M. A survey of collaborative filtering techniques[J]. Advances in artificial intelligence, 2009, 2009: 4. 协同过滤的篇survey, 按照memory-base, model-based, hybrid分类方法介绍各种协同过滤方法及评价标准,并在其中给出基于netflix数据进行评估的效果对比
- Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. 主要集中在因式分解实现协同过滤方法,如果看完Advances in collaborative filtering[M]//Recommender Systems Handbook的话,这篇文章就没有必要再看了
- Pazzani M J, Billsus D. Content-based recommendation systems[M]//The adaptive web. Springer Berlin Heidelberg, 2007: 325-341.从宏观上介绍content-based的策略架构
1. Content-based方法
content-based方法非常依赖于特定领域item的特征提取及处理,例如音乐推荐或是关键词推荐中很多细节内容信息处理过程都是不一样的,故这里仅列了content-based综述类的几篇文章。
- Pazzani M J, Billsus D. Content-based recommendation systems[M]//The adaptive web. Springer Berlin Heidelberg, 2007: 325-341.从宏观上介绍content-based的策略架构
- Lops P, de Gemmis M, Semeraro G. Content-based recommender systems: State of the art and trends[M]//Recommender Systems Handbook. Springer US, 2011: 73-105. RS Handbook中专门介绍content-based 算法的章节
- Jannach D, Zanker M, Felfernig A, et al. Content-based recommendation [M] Charpter 3 Recommender systems: an introduction[M]. Cambridge University Press, 2010.
2. Collaborative Filtering方法
1) Neighbourhood Based Methods
- Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2001: 285-295. KNN进行item-based推荐的经典文章,其中也介绍了多种相似度度量标准
- Linden G, Smith B, York J. Amazon. com recommendations: Item-to-item collaborative filtering[J]. Internet Computing, IEEE, 2003, 7(1): 76-80. 经典的亚马逊item-based算法的文章
- Gionis A, Indyk P, Motwani R. Similarity search in high dimensions via hashing[C]//VLDB. 1999, 99: 518-529. LSH
- Bell R M, Koren Y. Scalable collaborative filtering with jointly derived neighborhood interpolation weights[C]//Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on. IEEE, 2007: 43-52.
- Indyk P, Motwani R. Approximate nearest neighbors: towards removing the curse of dimensionality[C]//Proceedings of the thirtieth annual ACM symposium on Theory of computing. ACM, 1998: 604-613. LSH
- Buhler J. Efficient large-scale sequence comparison by locality-sensitive hashing[J]. Bioinformatics, 2001, 17(5): 419-428. LSH应用
- Chen T, Zheng Z, Lu Q, et al. Feature-based matrix factorization[J]. arXiv preprint arXiv:1109.2271, 2011.上交Apex实验室开发的svdfeature工具背后的原理。 优点是可以对照着代码学习
2) Model Based Methods
- Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.主要集中在因式分解实现协同过滤方法,如果看完Advances in collaborative filtering[M]//Recommender Systems Handbook的话,这篇文章就没有必要再看了
- Singh A P, Gordon G J. A unified view of matrix factorization models[M]//Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2008: 358-373.
3) Hybrid Methods
- Koren Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2008: 426-434. 因式分解与Neighbour-based方法融合
- Burke R. Hybrid recommender systems: Survey and experiments[J]. User modeling and user-adapted interaction, 2002, 12(4): 331-370.
- Burke R. Hybrid recommender systems: Survey and experiments[J]. User modeling and user-adapted interaction, 2002, 12(4): 331-370. 介绍了多种推荐算法进行融合的框架
二. 推荐系统工业界应用
- Netflix:Netflix视频推荐的背后:算法知道你想看什么
- Netflix:Netflix Recommendations Beyond the 5 Stars
- Hulu:Recommender System Algorithm and Architecture-项亮
- Youtube:Davidson J, Liebald B, Liu J, et al. The YouTube video recommendation system[C]//Proceedings of the fourth ACM conference on Recommender systems. ACM, 2010: 293-296. Youtube推荐系统中的主要算法。 百度关键词搜索推荐系统对其进行了优化, 实现了任意类型的级联二部图推荐。 具体内容可参见博文:google youtube 电影推荐算法, 以及百度关键词搜索推荐级联二部图实现
- 豆瓣: 个性化推荐系统的几个问题_豆瓣网王守崑
- 豆瓣:阿稳_寻路推荐_豆瓣
- 豆瓣:豆瓣在推荐领域的实践与思考
- 百分点:量化美-时尚服饰搭配引擎
- weibo及考拉FM:停不下来的推荐实践_陈开江
- 阿里:天猫双11推荐技术应用
- 阿里:淘宝推荐系统
- 当当:当当网搜索和推荐_庄洪波
- 土豆:个性化视频推荐系统土豆_明洪涛
- 360:360推荐系统实践-杨浩
- 盛大:推荐系统实战与效果提升之道-陈运文
- 盛大:智能推荐系统的开发与应用-陈运文
三. 推荐系统书籍
- Segaran T. Programming collective intelligence: building smart web 2.0 applications[M]. O’Reilly Media, 2007.寓教于乐的一本入门教材,附有可以直接动手实践的toy级别代码
- Shapira B. Recommender systems handbook[M]. Springer, 2011. 推荐系统可做枕头,也应该放在枕边的书籍,看了半本多。如果将该书及其中的参考文献都看完并理解,那恭喜你,你已经对这个领域有深入理解了
- Jannach D, Zanker M, Felfernig A, et al. Recommender systems: an introduction[M]. Cambridge University Press, 2010. 可以认为是2010年前推荐系统论文的综述集合
- Celma O. Music recommendation and discovery[M]. Springer, 2010. 主要内容集中在音乐推荐,领域非常专注于音乐推荐,包括选取的特征,评测时如何考虑音乐因素
- Word sense disambiguation: Algorithms and applications[M]. Springer Science+ Business Media, 2006. 如果涉及到关键词推荐,或是文本推荐, 则可以查阅该书
P.S. 想对某个领域或是工具有深入了解,可以找一本该行业的XX HandBook满怀勇气与无畏细心看完,然后就会对这个领域有一定(较深)了解,当然如果手头有相关项目同步进行,治疗效果更好^_^
四. 其他资料
因为我一直认为推荐系统不是一个独立的学科,它很多技术都是直接来自于机器学习,数据挖掘和信息检索(特别是文本相关的搜索推荐),所以以下也整理了一些之前工作及工作之余看过,了解过,或者准备看的这方面的资料
1. 数据挖掘资料
- Han J, Kamber M, Pei J. Data mining: concepts and techniques[M]. Morgan kaufmann, 2006. 数据挖掘方面的handbook,教科书类型,虽然厚,却通俗易懂(再次提醒,要了解某一领域,找本该领域的啥啥handbook耐心认真读完,那你基本对该领域有一定认识了)
- Chakrabarti S. Mining the Web: Discovering knowledge from hypertext data[M]. Morgan Kaufmann, 2003.介绍了一个搜索引擎中的大部分技术,包括spider,索引建立,内部的机器学习算法,信息检索,而且非常具有实用性,我在百度商务搜索部开发的spider,就是按照其中的架构设计开发的
- Liu B. Web data mining: exploring hyperlinks, contents, and usage data[M]. Springer, 2007. 如果说 Mining the Web: Discovering knowledge from hypertext data更偏web mining更偏整体,工程的话,这本书就更偏策略,两本都读过的话,你对搜索引擎中的数据挖掘算法的了解,就比较全面了
- Wu X, Kumar V, Quinlan J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1): 1-37. 专门将2006年评选出来的10大数据挖掘算法拎了出来讲讲
- Rajaraman A, Ullman J D. Mining of massive datasets[M]. Cambridge University Press, 2012.介绍如何使用hadoop进行数据挖掘,如果有hadoop环境则非常实用
- Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data[M]. Cambridge University Press, 2007.文本挖掘的handbook
- Witten I H, Frank E. Data Mining: Practical machine learning tools and techniques[M]. Morgan Kaufmann, 2005. 结合weka介绍数据挖掘,最大的优点是weka open source
2. 机器学习资料
- Tom M Mitchell,Machine Learning, McGraw-Hill Science/Engineering/Mat, 1997,非常早起的机器学习书籍,非常适合入门, 浅显易懂, 但对于工业界应用, 只能说是Toy级别的算法。
- Bishop C M, Nasrabadi N M. Pattern recognition and machine learning[M]. New York: springer, 2006. 进阶型的书籍,对每种算法都有较为具体的理论介绍
- 课程: 机器学习(Stanford->Andrew Ng)http://v.163.com/special/opencourse/machinelearning.html,大名鼎鼎的Andrew Ng的机器学习公开课,网易上字幕版本;配合课程stanford cs229对应的handout及习题一起学习效果更好
- Liu T Y. Learning to rank for information retrieval[J]. Foundations and Trends in Information Retrieval, 2009, 3(3): 225-331. LTR技术比较全的介绍, 包括概念,技术; 同时还包含该领域中具体的开放数据集合, 选择特征的标准等; 在学习基本概念的同时, 可以使用这些数据做一做实验。
- http://archive.ics.uci.edu/ml/datasets.html 包含了很多机器学习的数据集,是非常好的学习上手数据
3. 信息检索
- Agirre, Eneko, and Philip Glenny Edmonds, eds. Word sense disambiguation: Algorithms and applications. Vol. 33. Springer Science+ Business Media, 2006.
- Manning C D, Raghavan P, Schütze H. Introduction to information retrieval[M]. Cambridge: Cambridge University Press, 2008.
- MOFFAT A A, Bell T C. Managing gigabytes: compressing and indexing documents and images[M]. Morgan Kaufmann, 1999.一本很老的介绍搜索引擎的书了,不过09年的时候看还是被震撼到了,书中各种变着戏法使用几十M内存处理上G数据,感觉非常牛叉。
- Liu T Y. Learning to rank for information retrieval[J]. Foundations and Trends in Information Retrieval, 2009, 3(3): 225-331.
- Cao Z, Qin T, Liu T Y, et al. Learning to rank: from pairwise approach to listwise approach[C]//Proceedings of the 24th international conference on Machine learning. ACM, 2007: 129-136. 另外附上《tutorial-lTR by Hang Li》《tutorial-LTR by TY Liu》
五. 推荐系统经典软件
收集和整理了目前互联网上能找到的和推荐系统相关的开源项目(Open Source Software | Recommendation),罗列如下,希望对本领域感兴趣的朋友有帮助(文/陈运文)
1. SVDFeature
由上海交大的同学开发(开发语言C++),代码严谨、质量高,我们参加KDD竞赛时用过,很可靠和方便,而且出自咱们国人之手,所以置顶推荐!
项目地址:
http://svdfeature.apexlab.org/wiki/Main_Page
SVDFeature包含一个很灵活的Matrix Factorization推荐框架,能方便的实现SVD、SVD++等方法, 是单模型推荐算法中精度最高的一种。SVDFeature代码精炼,可以用相对较少的内存实现较大规模的单机版矩阵分解运算。
另外含有Logistic regression的model,可以很方便的用来进行ensemble运算
2. Crab
项目地址:
http://geektell.com/story/crab-recommender-systems-in-python/
系统的Tutorial可以看这里:
http://muricoca.github.io/crab/
Crab是基于Python开发的开源推荐软件,其中实现有item和user的协同过滤。据说更多算法还在开发中,
Crab的python代码看上去很清晰明了,适合一读
3. CofiRank
C++开发的 Collaborative Filtering算法的开源推荐系统,但似乎2009年后作者就没有更新了,
CofiRank依赖boost库,联编会比较麻烦。不是特别推荐
项目地址:
4. EasyRec
Java开发的推荐系统,感觉更像一个完整的推荐产品,包括了数据录入模块、管理模块、推荐挖掘、离线分析等,整个系统比较完备。
项目地址:
5. GraphLab
项目地址:
Graphlab是基于C++开发的一个高性能分布式graph处理挖掘系统,特点是对迭代的并行计算处理能力强(这方面是hadoop的弱项),
由于功能独到,GraphLab在业界名声很响
用GraphLab来进行大数据量的random walk或graph-based的推荐算法非常有效。
Graphlab虽然名气比较响亮(CMU开发),但是对一般数据量的应用来说可能还用不上
6. Lenskit
这个Java开发的开源推荐系统,来自美国的明尼苏达大学,也是推荐领域知名的测试数据集Movielens的作者,
他们的推荐系统团队,在学术圈内的影响力很大,很多新的学术思想会放到这里
7. Mahout
网址
Mahout知名度很高,它是Apache基金资助的重要项目,在国内流传很广,并已经有一些中文相关书籍了。注意Mahout是一个分布式机器学习算法的集合,协同过滤只是其中的一部分。除了被称为Taste的分布式协同过滤的实现(Hadoop-based,另有pure Java版本),Mahout里还有其他常见的机器学习算法的分布式实现方案。
另外Mahout的作者之一Sean Owen基于Mahout开发了一个试验性质的推荐系统,称为Myrrix, 可以看这里:
http://myrrix.com/quick-start/
8. MyMediaLite
http://mymedialite.net/index.html
基于.NET框架的C#开发(也有Java版本),作者基本来自德国、英国等欧洲的一些高校。
除了提供了常见场景的推荐算法,MyMediaLite也有Social Matrix Factorization这样独特的功能
尽管是.Net框架,但也提供了Python、Ruby等脚本语言的调用API
MyMediaLite的作者之一Lars Schmidt在2012年KDD会议上专门介绍过他们系统的一些情况,可惜由于.Net开发框架日渐式微,MyMediaLite对Windows NT Server的系统吸引力大些,LAMP网站用得很少
9. LibFM
项目网址:
作者是德国Konstanz University的Steffen Rendle,去年KDD Cup竞赛上我们的老对手,他用LibFM同时玩转Track1和Track2两个子竞赛单元,都取得了很好的成绩,说明LibFM是非常管用的利器(虽然在Track1上被我们打败了,hiahia)
顾名思义,LibFM是专门用于矩阵分解的利器,尤其是其中实现了MCMC(Markov Chain Monte Carlo)优化算法,比常见的SGD(随即梯度下降)优化方法精度要高(当然也会慢一些)
10. LibMF
项目地址:
http://www.csie.ntu.edu.tw/~cjlin/libmf/
注意LibMF和上面的LibFM是两个不同的开源项目。这个LibMF的作者是大名鼎鼎的台湾国立大学,他们在机器学习领域享有盛名,近年连续多届KDD Cup竞赛上均获得优异成绩,并曾连续多年获得冠军。台湾大学的风格非常务实,业界常用的LibSVM, Liblinear等都是他们开发的,开源代码的效率和质量都非常高
LibMF在矩阵分解的并行化方面作出了很好的贡献,针对SDG优化方法在并行计算中存在的locking problem和memory discontinuity问题,提出了一种矩阵分解的高效算法,根据计算节点的个数来划分评分矩阵block,并分配计算节点。系统介绍可以见这篇论文(Recsys 2013的 Best paper Award)
Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A Fast Parallel SGD for Matrix Factorization in Shared Memory Systems. Proceedings of ACM Recommender Systems 2013.
11. PREA
全名是 Personalized Recommendation Algorithms Toolkit, 开发语言为Java。也是一个轻量级的开源项目
项目网址:
http://mloss.org/software/view/420/
放在Mloss这个大project下。我个人感觉PREA还是比较简陋的,参加开发的三位工程师Joonseok Lee, Mingxuan Sun, Guy Lebanon更新频率很低,提供的资料也少。
不过Mloss下倒是能找到其他一些推荐开源项目
http://mloss.org/software/tags/collaborative-filtering/
12. Python-recsys
一个非常轻量级的开源推荐系统,python开发,作者似乎只有一位,
Python-recsys主要实现了SVD、Neighborhood SVD推荐算法,
这个项目麻雀虽小五脏俱全,评估数据(Movielens,Last.fm)、评估框架也都有
API也很简单清晰,代码简洁,属于推荐入门的良好教材。
不过真正要用到实际系统中,还是得补充很多内容
github的地址位于
https://github.com/ocelma/python-recsys
项目的介绍见:
http://ocelma.net/software/python-recsys/build/html/
14. RapidMiner
项目网址为:
Java语言开发,RapidMiner(前身是Yale)已经是一个比较成熟的数据挖掘解决方案了,包括常见的机器学习、NLP、推荐、预测等方法(推荐只占其中很小一部分),而且带有GUI的数据分析环境,数据ETL、预处理、可视化、评估、部署等整套系统都有。
另外RapidMiner提供commercial license,提供R语言接口,感觉在向着一个商用的数据挖掘公司的方向在前进。
15. Recommendable
基于Ruby语言开发,实现了一些评分预测的推荐算法,但是整体感觉比较单薄,
github上地址如下:
https://github.com/davidcelis/recommendable/
16. Recommenderlab
基于R语言开发的开源推荐程序,对经常使用R语言的工程师或者BI数据分析师来说,recommenderlab的出现绝对算得上是福音了
项目地址:
http://cran.r-project.org/web/packages/recommenderlab/index.html
基于Recommenderlab来开发推荐系统,代码会非常精简,因为推荐系统所依赖的user-item rating matrix对擅长处理向量运算的R语言来说再方便不过了,
但是在实际推荐系统中,需要考虑的问题和逻辑都比较复杂,用Recommenderlab不是很灵活。另外受限于R语言对内存的限制,Recommenderlab不太适用于过大规模的推荐应用
17. Waffles
SF地址:
http://waffles.sourceforge.net/
Waffles英文原意是蜂蜜甜饼(见logo),在这里却指代一个非常强大的机器学习的开源工具包,基于C++语言开发。
Waffles里包含的算法特别多,涉及机器学习的方方面面,推荐系统位于其中的Waffles_recommend tool,大概只占整个Waffles的1/10的内容(其它还有分类、聚类、采样、降维、数据可视化、音频处理等许许多多工具包,估计能与之媲美的也就数Weka了)