Callable、Future、RunnableFuture、FutureTask的原理及应用

1. Callable、Future、RunnableFuture、FutureTask的继承关系

在多线程编程中,我们一般通过一个实现了Runnable接口的对象来创建一个线程,这个线程在内部会执行Runnable对象的run方法。如果说我们创建一个线程来完成某项工作,希望在完成以后该线程能够返回一个结果,但run方法的返回值是void类型,直接实现run方法并不可行,这时我们就要通过FutureTask类来间接实现。

FutureTask实现了RunnableFuture接口,而RunnableFuture接口实际上仅仅是Runnable接口和Future接口的合体。Future接口提供取消任务、检测任务是否执行完成、等待任务执行完成获得结果等方法。从图中可以看出,FutureTask类中的run方法已经实现好了(图中的代码仅仅是核心代码),这个run方法实际上就是调用了由构造函数传递进来的call方法,并将返回值存储在FutureTask的私有数据成员outcome中。这样一来我们将FutureTask传递给一个Thread时,表面上我们仍然执行的是run,但在run方法的内部实际上执行的是带有返回值的call方法,这样即使得java多线程的执行框架保持不变,又实现了线程完成后返回结果的功能。同时FutureTask又将结果存储在outcome中,我们可以通过调用FutureTask对象的get方法获取outcome(也就是call方法的返回结果)。


Future接口功能介绍


boolean cancel(boolean mayInterruptIfRunning);


功能:设置线程的中断标志位

参数:mayInterruptIfRunning为ture,如果线程可以取消则设置线程的中断标志位

返回值:若线程已经完成,返回false;否则返回true

注意:要实现取消线程执行的功能,call函数需要在循环条件中检查中断标志位,以跳出循环


boolean isCancelled();


判断线程是否取消


boolean isDone();


线程执行完成,返回true;如果cancel方法返回true,则该方法也返回true


V get() throws InterruptedException, ExecutionException;


获取call方法的返回结果,如果call方法没有执行完成,则会阻塞当前线程,直到call方法执行完毕,才被唤醒


V get(long timeout, TimeUnit unit)


设置时限的get方法。

2. Future及FutureTask的使用

Future以及FutureTask是线程池实现的基础元素,但不是说Future及FutureTask只能在线程池中才能使用,下面的例子就说明了FutureTask独立使用的情况。在这个例子中,我们首先随机产生了2000个整数存于数组中,然后创建了两个线程,一个线程寻找前1000个数的最大值,另个一线程寻找后1000个数的最大值。主线程比较这两个线程的返回结果来确定这2000个数的最大值值。

package javaleanning;

import java.util.Random;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;

public class FutureDemo {
	public static void main(String[] args) throws InterruptedException, ExecutionException{
		int[] a = new int[2000];
		Random rd = new Random();
		for(int i = 0; i < 2000; i++){
			a[i] = rd.nextInt(20000);
		}

		class FindMax implements Callable<Integer>{
			private int begin,end;
			public FindMax(int a[],int begin, int end){
				this.begin = begin;
				this.end = end;
			}
			@Override
			public Integer call() throws Exception {
				int maxInPart = a[begin];
				for(int i = begin; i <= end; i++){
					if(a[i] > maxInPart){
						maxInPart = a[i];
					}
				}
				return new Integer(maxInPart);
			}
		}

		FutureTask<Integer> findMaxInFirstPart = 
                              new FutureTask<Integer>(new FindMax(a,0,999));
		FutureTask<Integer> findMaxInSecondPart = 
                              new FutureTask<Integer>(new FindMax(a,1000,1999));

		new Thread(findMaxInFirstPart).start();
		new Thread(findMaxInSecondPart).start();

		int maxInFirst =  (int) findMaxInFirstPart.get();
		int maxInSecond = (int) findMaxInSecondPart.get();
		System.out.println("Max is " + 
                            (maxInFirst > maxInSecond ? maxInFirst:maxInSecond));
		//验证结果是否正确
		int max = a[0];
		for(int i = 0; i < 2000; i++){
			if(a[i] > max){
				max = a[i];
			}
		}
		System.out.println(max);
	}
}

3. FutureTask的实现原理

构造函数

public FutureTask(Callable<V> callable) {
    if (callable == null)
        throw new NullPointerException();
    this.callable = callable;
    this.state = NEW;       // ensure visibility of callable
}

public FutureTask(Runnable runnable, V result) {
    this.callable = Executors.callable(runnable, result);
    this.state = NEW;       // ensure visibility of callable
}

FutureTask有两个构造函数,通常来说我们使用第一个构造函数。这里要强调一下第二个构造函数,它有两个类型参数,分别是Runnable类型和泛型V,然后由这两个构造一个Callable对象。当线程运行结束以后会返回由构造函数传递进来的这个泛型result对象,也就是说返回的值并不是通过运行得到的,而是由构造函数获取的一个指定的对象。

重要数据成员

private volatile int state;
private Object outcome;
private volatile Thread runner;
private volatile WaitNode waiters;

state表明了线程运行call方法的状态,初始状态为0,完成后由run方法将其设置为1。通过get方法获取结果时就必须检查state的值,如果该值为0,表明需要等待该结果,get方法就会将当前线程阻塞。

outcome表示了call方法的返回结果

runner表示运行FutureTask方法的线程,其值会在run方法中进行初始化

waiters指向了因获取结果而等待的线程组成的队列

重要方法

public void run() {
    if (state != NEW ||
        !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                     null, Thread.currentThread()))
        return;
    try {
        Callable<V> c = callable;
        if (c != null && state == NEW) {
            V result;
            boolean ran;
            try {
                result = c.call();
                ran = true;
            } catch (Throwable ex) {
                result = null;
                ran = false;
                setException(ex);
            }
            if (ran)
                set(result);
        }
    } finally {
        // runner must be non-null until state is settled to
        // prevent concurrent calls to run()
        runner = null;
        // state must be re-read after nulling runner to prevent
        // leaked interrupts
        int s = state;
        if (s >= INTERRUPTING)
            handlePossibleCancellationInterrupt(s);
    }
}

从代码中可以看出run方法中调用了从构造函数传递来的call方法。

protected void set(V v) {
    if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
        outcome = v;
        UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
        finishCompletion();
    }
}

当call方法执行完毕后,run方法调用又调用了set方法,它主要实现两个功能,一个是将结果赋值给outcome,另一个是通过finishCompletion唤醒由调用此FutureTask对象的get方法而阻塞的线程

private void finishCompletion() {
    // assert state > COMPLETING;
    for (WaitNode q; (q = waiters) != null;) {
        if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
            for (;;) {
                Thread t = q.thread;
                if (t != null) {
                    q.thread = null;
                    LockSupport.unpark(t);
                }
                WaitNode next = q.next;
                if (next == null)
                    break;
                q.next = null; // unlink to help gc
                q = next;
            }
            break;
        }
    }

    done();

    callable = null;        // to reduce footprint
}

public V get() throws InterruptedException, ExecutionException {
    int s = state;
    if (s <= COMPLETING)
        s = awaitDone(false, 0L);
    return report(s);
}

在get方法中首先判断了state的值,如果call方法还未完成,就会通过awaitDone来阻塞自己。

private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }
public boolean cancel(boolean mayInterruptIfRunning) {
    if (!(state == NEW &&
          UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
              mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
        return false;
    try {    // in case call to interrupt throws exception
        if (mayInterruptIfRunning) {
            try {
                Thread t = runner;
                if (t != null)
                    t.interrupt();
            } finally { // final state
                UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
            }
        }
    } finally {
        finishCompletion();
    }
    return true;
}

在cannel方法中,如果允许对线程中断,则设置该线程的中断标志位,并通过finishCompletion方法唤醒因等待结果而阻塞的线程。

参考文章

[1] http://www.cnblogs.com/dolphin0520/p/3949310.html

[2] http://www.open-open.com/lib/view/open1384351141649.html

时间: 2024-10-21 21:10:01

Callable、Future、RunnableFuture、FutureTask的原理及应用的相关文章

Java并发编程与技术内幕:Callable、Future、FutureTask、CompletionService

林炳文Evankaka原创作品.转载请注明出处http://blog.csdn.net/evankaka 在上一文章中,笔者介绍了线程池及其内部的原理.今天主要讲的也是和线程相关的内容.一般情况下,使用Runnable接口.Thread实现的线程我们都是无法返回结果的.但是如果对一些场合需要线程返回的结果.就要使用用Callable.Future.FutureTask.CompletionService这几个类.Callable只能在ExecutorService的线程池中跑,但有返回结果,也可

Java并发编程:Callable、Future和FutureTask(转)

Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一个缺陷就是:在执行完任务之后无法获取执行结果. 如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦. 而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. 今天我们就来讨论一下Callabl

Callable、Future和FutureTask浅析

我们知道创建线程的方式有两种,一种是实现Runnable接口,另一种是继承Thread,但是这两种方式都有个缺点,那就是在任务执行完成之后无法获取返回结果,那如果我们想要获取返回结果该如何实现呢?还记上一篇Executor框架结构中提到的Callable接口和Future接口吗?,是的,从JAVA SE 5.0开始引入了Callable和Future,通过它们构建的线程,在任务执行完成后就可以获取执行结果,今天我们就来聊聊线程创建的第三种方式,那就是实现Callable接口. 1.Callabl

Callable、Future和FutureTask

Runnable是执行工作的独立任务,但是它不返回任何值,如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦.自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. 一.Runnable java.lang.Runnable是一个接口,在它里面只声明了一个run()方法: 由于run()方法返回值为void类型,所以在执行完任务之后无法返回任何结果. 二.Callable Callable位

[转载] Java并发编程:Callable、Future和FutureTask

转载自http://www.cnblogs.com/dolphin0520/p/3949310.html 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一个缺陷就是:在执行完任务之后无法获取执行结果. 如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦. 而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果.

java多线程之Callable、Future和FutureTask

Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一个缺陷就是:在执行完任务之后无法获取执行结果. 如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦. 而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. 今天我们就来讨论一下Callabl

Java并发编程:Callable、Future和FutureTask的实现

启动线程执行任务,如果需要在任务执行完毕之后得到任务执行结果,可以使用从Java 1.5开始提供的Callable和Future下面就分析一下Callable.Future以及FutureTask的具体实现及使用方法源码分析基于JDK 1.7 一.Callable 与 Runnable java.lang.Runnable是一个接口,只有一个run()方法 public interface Runnable {    public abstract void run(); } run()方法的返

15、Java并发编程:Callable、Future和FutureTask

Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一个缺陷就是:在执行完任务之后无法获取执行结果. 如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦. 而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. 今天我们就来讨论一下Callabl

Java中的Runnable、Callable、Future、FutureTask的区别与示例

Java中存在Runnable.Callable.Future.FutureTask这几个与线程相关的类或者接口,在Java中也是比较重要的几个概念,我们通过下面的简单示例来了解一下它们的作用于区别. Runnable 其中Runnable应该是我们最熟悉的接口,它只有一个run()函数,用于将耗时操作写在其中,该函数没有返回值.然后使用某个线程去执行该runnable即可实现多线程,Thread类在调用start()函数后就是执行的是Runnable的run()函数.Runnable的声明如下