BZOJ 3901 棋盘游戏 解题报告

这题有个重要性质:

我们设 Flag[i][j] 表示 (i, j) 是否被奇数个操作所覆盖,

也就是操作次数对 2 取模。

设 x = (n + 1) / 2。

那么对于所有的合法的操作方案,

令 1 <= i <= x , 1 <= j < x,

都有 Flag[i][j] ^ Flag[i][x] ^ Flag[i][j + x] = 0

令 1 <= i < x , 1 <= j <= x,

都有 Flag[i][j] ^ Flag[x][j] ^ Flag[i + x][j] = 0

考虑任意一次操作,如果覆盖了 (i, x),

那么在 (i, j) 和 (i, j + x) 中必然有且仅有一个被覆盖。

(i, j) 和 (i + x, j) 同理,

于是每次都会改变那个三元组中的两个元素,或者一个都不改变。

所以这个性质也是成立的。

那么怎么说明满足上述性质的 Flag[][] 就可以对应一个合法的方案呢?

我们考虑:

我们无论怎样在这个满足性质的 Flag[][] 基础上进行操作,

这个 Flag[][] 还会是满足性质的。

先不考虑其他格子的 Flag[][] 值,

我们考虑所有的 1 <= i <= x,1 <= j <= x:

我们都可以把 Flag[i][j] 变成 0。

然后我们考虑对于所有的 1 <= i <= x,x < j <= n:

Flag[i][j] = Flag[i][x] ^ Flag[i][j - x] = 0 ^ 0 = 0

同理,其他格子的 Flag[][] 值也都会是 0。

于是满足上述性质的 Flag[][] 就可以对应一个合法的方案。

好了,那么我们就暴力枚举 Flag[x][1] - Flag[x][x] 的值,

然后 Flag[x][x + 1] - Flag[x][n] 的值也就可以确定了,

其次再分别枚举 Flag[1][x] - Flag[x - 1][x] 的值,

(这里是指一个一个处理这些值,不用再 dfs 了)

那么 Flag[x + 1][x] - Flag[n][x] 的值也可以确定了。

在此基础上对于 1 < i < x,1 < j < x:

我们可以枚举 Flag[i][j] 的值,

那么 Flag[i + x][j], Flag[i][j + x], Flag[i + x][j + x] 的值都可以确定,

于是取最优值即可。

复杂度 O(1.4^n * n^2)。

毕竟 Gromah 太弱,只会做水题。

时间: 2024-10-18 04:54:45

BZOJ 3901 棋盘游戏 解题报告的相关文章

BZOJ 3953 Self-Assembly 解题报告

首先,我们可以先考虑一个暴力一点的算法: 对于任意两个分子,如果它们能以至少一种进行匹配,那么我们就在这两个分子之间连一条边. 然后如果我们能找到一个环,就说明是 unbounded,否则就是 bounded. 复杂度是 $O(n^2)$ 的,然而 $n \le 40000$ ,显然是不行的. 考虑优化.我们注意到本质不同的边有 $26$ 种,那么我们应该能省去很多不必要的边. 令 $inv(x)$ 为与类型为 $x$ 的离子匹配的离子,如 $inv(A+)=A-$. 对于在同一个分子上的两个离

BZOJ 4302 Buildings 解题报告

这个题好像很有趣的样子. 题目分析: 房间都是 $1\times k$ 的,也就是一条一条的.这个好像比较显然的样子. 一个房间如果要覆盖某个格子$u$,那么这个房间的面积至少为 $dis(u, Boundry)$,即其到边界的距离,这个好像也比较显然的样子. 于是答案至少是 $max\{dis(u, Boundry)\}$,然后可以通过构造来取到最小值,即答案就是$max\{dis(u, Boundry)\}$. 算法流程: 特判:如果输入的是一个边长为一个奇数的正方形,且 $(x,y)$ 恰

BZOJ 3160 万径人踪灭 解题报告

这个题感觉很神呀.将 FFT 和 Manacher 有机结合在了一起. 首先我们不管那个 “不能连续” 的条件,那么我们就可以求出有多少对字母关于某一条直线对称,然后记 $T_i$ 为关于直线 $i$ 对称的字母对的数量,那么答案(暂记为 $Ans$)就会是: $$Ans = \sum 2^{T_i}-1$$ 在不管那个 “不能连续” 的条件的时候,这个应该是显然的. 怎么算的话,我们弄两次.分别把 $a$ 和 $b$ 当做 $1$,另一个当做 $0$,然后就可以得到一个多项式,将这个多项式平方

BZOJ 4127 Abs 解题报告

这个题感觉很厉害的样子.. 首先我们注意到一点:每次加的 $d$ 都是非负的. 那么就说明一个数只可能从负数变成非负数并且只会变一次. 所以我们就可以暴力地去改变一个数的正负情况. 然后我们就可以用树链剖分,维护一下区间的最大负数和负数的个数就可以了. 时间复杂度 $O(n\log^2 n)$,空间复杂度 $O(n)$. 1 #include <cstdio> 2 typedef long long LL; 3 #define N 262144 + 5 4 #define INF 123456

BZOJ 1051 最受欢迎的牛 解题报告

题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[Submit][Status][Discuss] Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛

Poi 2014 解题报告( 1 - 4 ,6 )

撸了一下Poi 2014 ,看了一下网上题解不多,所以决定写一下.有的题应该是数据不强水过去了,等北京回来在写一下复杂度比较靠谱的代码 o(╯□╰)o 第一题: 题意是给定一个长度不大于1000000,只包括p和j的串,求一个最长的子串,要求子串任何一个前缀和后缀都满足p的数量不少于j的数量. 首先把p当做1,把j当做0,算出前缀和 sum[] ,原来的问题就转化为求一个最长区间 [l,r] ,使得任意的i∈[l,r],都有 sum[i] - sum[l-1] >= 0 并且 sum[r] -

【模拟题(电子科大MaxKU)】解题报告

目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s 题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场.道路i连接农场A_i和B_i

解题报告 之 POJ3057 Evacuation

解题报告 之 POJ3057 Evacuation Description Fires can be disastrous, especially when a fire breaks out in a room that is completely filled with people. Rooms usually have a couple of exits and emergency exits, but with everyone rushing out at the same time

hdu 1541 Stars 解题报告

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1541 题目意思:有 N 颗星星,每颗星星都有各自的等级.给出每颗星星的坐标(x, y),它的等级由所有比它低层(或者同层)的或者在它左手边的星星数决定.计算出每个等级(0 ~ n-1)的星星各有多少颗. 我只能说,题目换了一下就不会变通了,泪~~~~ 星星的分布是不是很像树状数组呢~~~没错,就是树状数组题来滴! 按照题目输入,当前星星与后面的星星没有关系.所以只要把 x 之前的横坐标加起来就可以了