BZOJ_2743_[HEOI2012]采花_离线+树状数组

Description

萧芸斓是Z国的公主,平时的一大爱好是采花。今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花

。花园足够大,容纳了n朵花,花有c种颜色(用整数1-c表示),且花是排成一排的,以便于公主采花。公主每次

采花后会统计采到的花的颜色数,颜色数越多她会越高兴!同时,她有一癖好,她不允许最后自己采到的花中,某

一颜色的花只有一朵。为此,公主每采一朵花,要么此前已采到此颜色的花,要么有相当正确的直觉告诉她,她必

能再次采到此颜色的花。由于时间关系,公主只能走过花园连续的一段进行采花,便让女仆福涵洁安排行程。福涵

洁综合各种因素拟定了m个行程,然后一一向你询问公主能采到多少朵花(她知道你是编程高手,定能快速给出答

案!),最后会选择令公主最高兴的行程(为了拿到更多奖金!)。

Input

第一行四个空格隔开的整数n、c以及m。

接下来一行n个空格隔开的整数,每个数在[1, c]间,第i个数表示第i朵花的颜色。

接下来m行每行两个空格隔开的整数l和r(l ≤ r),表示女仆安排的行程为公主经过第l到第r朵花进行采花。

Output

共m行,每行一个整数,第i个数表示公主在女仆的第i个行程中能采到的花的颜色数。

Sample Input

5 3 5
1 2 2 3 1
1 5
1 2
2 2
2 3
3 5

Sample Output

2
0
0
1
0
【样例说明】
询问[1, 5]:公主采颜色为1和2的花,由于颜色3的花只有一朵,公主不采;询问[1, 2]:颜色1和颜色2的花均只有一朵,公主不采;
询问[2, 2]:颜色2的花只有一朵,公主不采;
询问[2, 3]:由于颜色2的花有两朵,公主采颜色2的花;
询问[3, 5]:颜色1、2、3的花各一朵,公主不采。

HINT

【数据范围】

对于100%的数据,1 ≤ n ≤    10^6,c ≤ n,m ≤10^6。



分析:

看起来莫队可做,但数据范围就是为了卡这个的,于是我们考虑同样是离线的另一种做法。

首先对于每个花,求出下一次出现颜色相同的花的位置$nxt[]$ ,如果没有则$nxt[]$ 为0。

然后把询问搞下来,按询问的左端点升序排序。

一开始,我只计算每个花第一次出现时的贡献。

扫一遍数组,假设我当前在$i$ 这个位置,离我最近的询问左端点是$j$ ,那我们要舍弃掉$i$ 到$j-1$ 这部分的贡献。

删除第$i$ 个数,对右端点在$i+1\thicksim nxt[i]-1$ 的这些需要$-1$ ,对右端点在$nxt[i]\thicksim nxt[nxt[i]]-1$ 的这部分$+1$ ,然后树状数组维护一下整个操作即可。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
#define N 1000050
int n,v[N],c,m,b[N],nxt[N],now[N],ans[N];
struct A {
    int l,r,pos;
}a[N];
bool cmp(const A &x,const A &y) {
    if(x.l==y.l) return x.r<y.r;
    return x.l<y.l;
}
void fix(int x,int v) {
    for(;x<=n;x+=x&(-x)) b[x]+=v;
}
int inq(int x) {
    int re=0;
    for(;x;x-=x&(-x)) re+=b[x];
    return re;
}
int main() {
    scanf("%d%d%d",&n,&c,&m);
    int i;
    for(i=1;i<=n;i++) scanf("%d",&v[i]);
    for(i=1;i<=m;i++) {
        scanf("%d%d",&a[i].l,&a[i].r); a[i].pos=i;
    }
    sort(a+1,a+m+1,cmp);
    for(i=n;i;i--) {
        nxt[i]=now[v[i]]; now[v[i]]=i;
    }
    for(i=1;i<=n;i++) {
        if(nxt[i]) fix(nxt[i],1);
        if(nxt[nxt[i]]) fix(nxt[nxt[i]],-1);
    }
    int fafa=1;
    for(i=1;i<=m;i++) {
        while(fafa<a[i].l) {
            if(nxt[fafa]) fix(nxt[fafa],-1);
            if(nxt[nxt[fafa]]) fix(nxt[nxt[fafa]],1);
            fafa++;
        }
        ans[a[i].pos]=inq(a[i].r)-inq(a[i].l-1);
    }
    for(i=1;i<=m;i++) printf("%d\n",ans[i]);
}

原文地址:https://www.cnblogs.com/suika/p/8890570.html

时间: 2024-10-02 18:58:10

BZOJ_2743_[HEOI2012]采花_离线+树状数组的相关文章

13年山东省赛 Boring Counting(离线树状数组or主席树+二分or划分树+二分)

转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 2224: Boring Counting Time Limit: 3 Sec  Memory Limit: 128 MB Description In this problem you are given a number sequence P consisting of N integer and Pi is the ith element in the sequence.

SPOJ DQUERY D-query 离线+树状数组

本来是想找个主席树的题目来练一下的,这个题目虽说可以用主席树做,但是用这个方法感觉更加叼炸天 第一次做这种离线方法,所谓离线,就在把所有询问先存贮起来,预处理之后再一个一个操作 像这个题目,每个操作要求区间不同元素的个数,我盲目去查的话,某个元素在之前如果出现了,我把他算在当前区间也不好,算在之前的区间也不好,都会出错. 一个好的方法就是把区间排好序,针对某个区间在树状数组上更新以及查询相应值,这样能准确查出结果,但又不影响之后的查询 具体来说,先把区间按右端点进行排序(我一开始按左端点排,想错

区间的关系的计数 HDU 4638 离线+树状数组

题目大意:给你n个人,每个人都有一个id,有m个询问,每次询问一个区间[l,r],问该区间内部有多少的id是连续的(单独的也算是一个) 思路:做了那么多离线+树状数组的题目,感觉这种东西就是一个模板了,23333,反正都是定义右区间的. 这题的关键难度就是如何定义id是连续的呢.我们每次往区间里面放一个数值以后都要add(pos, 1),就是把pos~n的所有的关系都+1.然后如果说在pos之前就出现id-1,就要add(pos[id-1], -1)(同理id+1也是这样),这样子表示从pos[

HDU 5156 - Harry and Christmas tree (dfs序+离线树状数组)

http://acm.hdu.edu.cn/showproblem.php?pid=5156 BC#25的C题. 题意是:给出一颗大小为n的树,以1为根,然后给出m次染色,每次将节点u加上一种颜色(一个节点可以有多个颜色). 最后查询树上每个节点对应子树上包含的不同颜色数量. 当时这场比赛没有做,回来看一下题目,没看标解就试着敲了一遍,于是解题思路从一开始就走上了不归路. 标解是O(n+m)的方法,主要思路是将问题转为:一次染色表示将u到根节点的路径都染上这种颜色. 但这样做需要去重,因为如果u

hdu 4605 Magic Ball Game (在线主席树/离线树状数组)

hdu 4605 题意: 有一颗树,根节点为1,每一个节点要么有两个子节点,要么没有,每个节点都有一个权值wi .然后,有一个球,附带值x . 球到达某个节点上,如果x==wi,那么球停在这个节点上 .当然,这个点是叶子节点也会停止 . 如果x<wi,那么有1/2的概率走向左子树,有1/2的概率走向右子树 . 如果x>wi,那么有1/8的概率走向左子树,有7/8的概率走向右子树 . 问球经过v节点的概率 .(停在v节点也算) 解法: 在线的话每一个节点建一棵根节点到该节点的线段树,离线的话就先

hdu 4417 Super Mario(离线树状数组|划分树)

Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2584    Accepted Submission(s): 1252 Problem Description Mario is world-famous plumber. His "burly" figure and amazing jumping a

TOJ 4105 Lines Counting(离线树状数组)

4105.   Lines Counting Time Limit: 2.0 Seconds   Memory Limit: 150000K Total Runs: 152   Accepted Runs: 47 On the number axis, there are N lines. The two endpoints L and R of each line are integer. Give you M queries, each query contains two interval

Codeforces 220B - Little Elephant and Array 离线树状数组

This problem can be solve in simpler O(NsqrtN) solution, but I will describe O(NlogN) one. We will solve this problem in offline. For each x (0?≤?x?<?n) we should keep all the queries that end in x. Iterate that x from 0 to n?-?1. Also we need to kee

POJ 3416 Crossing --离线+树状数组

题意: 给一些平面上的点,然后给一些查询(x,y),即以(x,y)为原点建立坐标系,一个人拿走第I,III象限的点,另一个人拿II,IV象限的,点不会在任何一个查询的坐标轴上,问每次两人的点数差为多少. 解法:离线树状数组.点不在坐标轴上,即点不共线使这题简单了不少,可以离散化点,也可以不离散化,因为x,y <= 500000,直接就可以搞.我这里是离散的,其实也没比直接搞快. 见两个树状数组,一个先把所有点都modify进去,一个等待以后加元素. 然后将查询和给出的点都按y坐标排序,然后离线对