洛谷P4213 Sum(杜教筛)

题目描述

给定一个正整数N(N\le2^{31}-1)N(N≤231−1)

求ans_1=\sum_{i=1}^n\phi(i),ans_2=\sum_{i=1}^n \mu(i)ans1?=∑i=1n??(i),ans2?=∑i=1n?μ(i)

输入输出格式

输入格式:

一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问

输出格式:

一共T行,每行两个用空格分隔的数ans1,ans2

输入输出样例

输入样例#1: 复制

6
1
2
8
13
30
2333

输出样例#1: 复制

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

裸的杜教筛

$\sum_{i=1}^{n}\varphi(i) = \frac{n\times(n+1)}{2} - \sum_{d=2}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)$

$\sum_{i=1}^{n}\mu(i) = 1 - \sum_{d=2}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\mu(i)$

然后直接暴力递归计算即可

#include<cstdio>
#include<map>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
#define LL long long
using namespace std;
using namespace __gnu_pbds;
const int MAXN=5000030;
int N,limit=5000000,tot=0,vis[MAXN],mu[MAXN],prime[MAXN];
LL phi[MAXN];
gp_hash_table<int,LL>Aphi,Amu;
void GetMuAndPhi()
{
    vis[1]=1;phi[1]=1;mu[1]=1;
    for(int i=1;i<=limit;i++)
    {
        if(!vis[i]) prime[++tot]=i,phi[i]=i-1,mu[i]=-1;
        for(int j=1;j<=tot&&i*prime[j]<=limit;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0){mu[i*prime[j]]=0; phi[i*prime[j]]=phi[i]*prime[j]; break;}
            else {mu[i*prime[j]]=-mu[i]; phi[i*prime[j]]=phi[i]*(prime[j]-1); }
        }
    }
    for(int i=1;i<=limit;i++) mu[i]+=mu[i-1],phi[i]+=phi[i-1];
}
LL SolvePhi(LL n)
{
    if(n<=limit) return phi[n];
    if(Aphi[n]) return Aphi[n];
    LL tmp=n*(n+1)/2;
    for(int i=2,nxt;i<=n;i=nxt+1)
        nxt=min(n,n/(n/i)),
        tmp-=SolvePhi(n/i)*(LL)(nxt-i+1);
    return Aphi[n]=tmp;
}
LL SolveMu(LL n)
{
    if(n<=limit) return mu[n];
    if(Amu[n]) return Amu[n];
    LL tmp=1;
    for(int i=2,nxt;i<=n;i=nxt+1)
        nxt=min(n,n/(n/i)),
        tmp-=SolveMu(n/i)*(LL)(nxt-i+1);
    return Amu[n]=tmp;
}
int main()
{
    GetMuAndPhi();
    int QWQ;
    scanf("%d",&QWQ);
    while(QWQ--)
    {
        scanf("%lld",&N);
        printf("%lld %lld\n",SolvePhi(N),SolveMu(N));
    }
    return 0;
}

原文地址:https://www.cnblogs.com/zwfymqz/p/8542105.html

时间: 2024-10-09 07:20:58

洛谷P4213 Sum(杜教筛)的相关文章

bzoj 3944 Sum —— 杜教筛

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-shadow/p/8491542.html 写法模仿其他博客的,但很慢啊... 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<ma

BZOJ.3944.Sum(杜教筛)

题目链接 又写个模板题用了半晚上.. 卡常写法 还非常短.. //35332 kb 7608 ms //跟Kelin dalao学一波卡常.怎么还是很慢QAQ //phi[]要longlong! #include <cstdio> #include <cstring> #include <algorithm> typedef long long LL; const int N=2e6; int cnt,Max,P[N>>3]; LL phi[N],mu[N]

3944: Sum[杜教筛]

3944: Sum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3471  Solved: 946[Submit][Status][Discuss] Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans2 Sample Input 6 1 2 8 13 30 2333 Sample Output 1 1

P4213 【模板】杜教筛(Sum)

\(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varphi(i) \end{aligned}\) \(\begin{aligned} ans_2=\sum_{i=1}^n \mu(i) \end{aligned}\) \(\color{#0066ff}{输 入 格 式}\) 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N

P4213【模板】杜教筛(Sum)

思路:杜教筛 提交:\(2\)次 错因:\(\varphi(i)\)的前缀和用\(int\)存的 题解: 对于一类筛积性函数前缀和的问题,杜教筛可以以低于线性的时间复杂度来解决问题. 先要构造\(h=f*g\),并且\(h\)的前缀和易求,\(g\)的区间和易求. 具体地: \[\sum_{i=1}^{n}h(i)=\sum_{i=1}^{n}\sum_{d|i}g(d)\cdot f(\frac{i}{d})\] \[\sum_{i=1}^{n}h(i)=\sum_{d=1}^{n}g(d)\

3944: Sum(杜教筛)

3944: Sum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4930  Solved: 1313[Submit][Status][Discuss] Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans2 Sample Input 6 1 2 8 13 30 2333 Sample Output 1 1

●杜教筛入门(BZOJ 3944 Sum)

入门杜教筛啦. http://blog.csdn.net/skywalkert/article/details/50500009(好文!) 可以在$O(N^{\frac{2}{3}})或O(N^{\frac{3}{4}})$的复杂度内解决求某些数论函数f(n)(或f的前缀和S(n)$)的值. 先来看看原理是什么.(接下来推导如何求数论函数f(n)的前缀和S(n)) 现在有两个数论函数$f( )和g( )$ (同时定义f的前缀和函数$S(n)=\sum_{i=1}^{n}f(i)$) 有狄利克雷乘

【模板】杜教筛(Sum)

传送门 Description 给定一个正整数\(N(N\le2^{31}-1)\) 求 \[ans1=\sum_{i=1}^n \varphi(i)\] \[ans_2=\sum_{i=1}^n \mu(i)\] Solution 总算是写了一个不会\(TLE\)的杜教筛,不想用\(map\),因此上了一个很丑的\(Hash\)-- Code #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?(

CCPC 2019 网络赛 HDU huntian oy (杜教筛)

1005 huntian oy (HDU 6706) 题意: 令,有T次询问,求 f(n, a, b). 其中 T = 10^4,1 <= n,a,b <= 1e9,保证每次 a,b互质. 思路: 首先我们需要知道 公式: gcd(a^n - b^n, a^m - b^m) = a^(gcd(m,n)) - b^(gcd(m,n)) 由a,b互质,原式即为 f(n, a, b) = ∑∑ (i-j)*[(i,j)=1] = ∑ (i*∑ [(i, j)=1] ) - ∑∑ j*[(i, j)=