调参必备---GridSearch网格搜索

什么是Grid Search 网格搜索?

Grid Search:一种调参手段;穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果。其原理就像是在数组里找最大值。(为什么叫网格搜索?以有两个参数的模型为例,参数a有3种可能,参数b有4种可能,把所有可能性列出来,可以表示成一个3*4的表格,其中每个cell就是一个网格,循环过程就像是在每个网格里遍历、搜索,所以叫grid search)

Simple Grid Search:简单的网格搜索

以2个参数的调优过程为例:

from sklearn.datasets import load_iris
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split

iris = load_iris()
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=0)
print("Size of training set:{} size of testing set:{}".format(X_train.shape[0],X_test.shape[0]))

####   grid search start
best_score = 0
for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        svm = SVC(gamma=gamma,C=C)#对于每种参数可能的组合,进行一次训练;
        svm.fit(X_train,y_train)
        score = svm.score(X_test,y_test)
        if score > best_score:#找到表现最好的参数
            best_score = score
            best_parameters = {‘gamma‘:gamma,‘C‘:C}
####   grid search end

print("Best score:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))

输出:

Size of training set:112 size of testing set:38
Best score:0.973684
Best parameters:{‘gamma‘: 0.001, ‘C‘: 100}

存在的问题:

原始数据集划分成训练集和测试集以后,其中测试集除了用作调整参数,也用来测量模型的好坏;这样做导致最终的评分结果比实际效果要好。(因为测试集在调参过程中,送到了模型里,而我们的目的是将训练模型应用在unseen data上);

解决方法:

对训练集再进行一次划分,分成训练集和验证集,这样划分的结果就是:原始数据划分为3份,分别为:训练集、验证集和测试集;其中训练集用来模型训练,验证集用来调整参数,而测试集用来衡量模型表现好坏。

X_trainval,X_test,y_trainval,y_test = train_test_split(iris.data,iris.target,random_state=0)
X_train,X_val,y_train,y_val = train_test_split(X_trainval,y_trainval,random_state=1)
print("Size of training set:{} size of validation set:{} size of teseting set:{}".format(X_train.shape[0],X_val.shape[0],X_test.shape[0]))

best_score = 0.0
for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        svm = SVC(gamma=gamma,C=C)
        svm.fit(X_train,y_train)
        score = svm.score(X_val,y_val)
        if score > best_score:
            best_score = score
            best_parameters = {‘gamma‘:gamma,‘C‘:C}
svm = SVC(**best_parameters) #使用最佳参数,构建新的模型
svm.fit(X_trainval,y_trainval) #使用训练集和验证集进行训练,more data always results in good performance.
test_score = svm.score(X_test,y_test) # evaluation模型评估
print("Best score on validation set:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))
print("Best score on test set:{:.2f}".format(test_score))

输出:

Size of training set:84 size of validation set:28 size of teseting set:38
Best score on validation set:0.96
Best parameters:{‘gamma‘: 0.001, ‘C‘: 10}
Best score on test set:0.92
然而,这种间的的grid search方法,其最终的表现好坏与初始数据的划分结果有很大的关系,为了处理这种情况,我们采用交叉验证的方式来减少偶然性。

Grid Search with Cross Validation

from sklearn.model_selection import cross_val_score

best_score = 0.0
for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        svm = SVC(gamma=gamma,C=C)
        scores = cross_val_score(svm,X_trainval,y_trainval,cv=5) #5折交叉验证
        score = scores.mean() #取平均数
        if score > best_score:
            best_score = score
            best_parameters = {"gamma":gamma,"C":C}
svm = SVC(**best_parameters)
svm.fit(X_trainval,y_trainval)
test_score = svm.score(X_test,y_test)
print("Best score on validation set:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))
print("Score on testing set:{:.2f}".format(test_score))

输出:

Best score on validation set:0.97
Best parameters:{‘gamma‘: 0.01, ‘C‘: 100}
Score on testing set:0.97

交叉验证经常与网格搜索进行结合,作为参数评价的一种方法,这种方法叫做grid search with cross validation。sklearn因此设计了一个这样的类GridSearchCV,这个类实现了fit,predict,score等方法,被当做了一个estimator,使用fit方法,该过程中:(1)搜索到最佳参数;(2)实例化了一个最佳参数的estimator;

from sklearn.model_selection import GridSearchCV

#把要调整的参数以及其候选值 列出来;
param_grid = {"gamma":[0.001,0.01,0.1,1,10,100],
             "C":[0.001,0.01,0.1,1,10,100]}
print("Parameters:{}".format(param_grid))

grid_search = GridSearchCV(SVC(),param_grid,cv=5) #实例化一个GridSearchCV类
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=10)
grid_search.fit(X_train,y_train) #训练,找到最优的参数,同时使用最优的参数实例化一个新的SVC estimator。
print("Test set score:{:.2f}".format(grid_search.score(X_test,y_test)))
print("Best parameters:{}".format(grid_search.best_params_))
print("Best score on train set:{:.2f}".format(grid_search.best_score_))

输出:

Parameters:{‘gamma‘: [0.001, 0.01, 0.1, 1, 10, 100], ‘C‘: [0.001, 0.01, 0.1, 1, 10, 100]}
Test set score:0.97
Best parameters:{‘C‘: 10, ‘gamma‘: 0.1}
Best score on train set:0.98
Grid Search 调参方法存在的共性弊端就是:耗时;参数越多,候选值越多,耗费时间越长!所以,一般情况下,先定一个大范围,然后再细化。

总而言之,言而总之

  • Grid Search:一种调优方法,在参数列表中进行穷举搜索,对每种情况进行训练,找到最优的参数;由此可知,这种方法的主要缺点是 比较耗时!

原文地址:https://www.cnblogs.com/ysugyl/p/8711205.html

时间: 2024-08-28 13:12:57

调参必备---GridSearch网格搜索的相关文章

【scikit-learn】网格搜索来进行高效的参数调优

 内容概要? 如何使用K折交叉验证来搜索最优调节参数 如何让搜索参数的流程更加高效 如何一次性的搜索多个调节参数 在进行真正的预测之前,如何对调节参数进行处理 如何削减该过程的计算代价 1. K折交叉验证回顾? 交叉验证的过程 选择K的值(一般是10),将数据集分成K等份 使用其中的K-1份数据作为训练数据,另外一份数据作为测试数据,进行模型的训练 使用一种度量测度来衡量模型的预测性能 交叉验证的优点 交叉验证通过降低模型在一次数据分割中性能表现上的方差来保证模型性能的稳定性 交叉验证可以用

【Task5(2天)】模型调参

使用网格搜索法对5个模型进行调优(调参时采用五折交叉验证的方式),并进行模型评估,记得展示代码的运行结果. 时间:2天 1.利用GGridSearchCV调参 1.1参数选择 首先选择5个模型要调的参数,这里是根据以前在知乎看的一张图片(感谢大佬!) parameters_log = {'C':[0.001,0.01,0.1,1,10]} parameters_svc = {'C':[0.001,0.01,0.1,1,10]} #这两个模型本来分数就不行,就少选择写参数来搜索 parameter

机器学习系列(11)_Python中Gradient Boosting Machine(GBM)调参方法详解

原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对:@酒酒Angie && 寒小阳([email protected]) 时间:2016年9月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52663170 声明:版权所有,转载请联系作者并注明出 1.前言 如果一直以来你只把GBM

转载:scikit-learn随机森林调参小结

在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC

支持向量机高斯核调参小结

在支持向量机(以下简称SVM)的核函数中,高斯核(以下简称RBF)是最常用的,从理论上讲, RBF一定不比线性核函数差,但是在实际应用中,却面临着几个重要的超参数的调优问题.如果调的不好,可能比线性核函数还要差.所以我们实际应用中,能用线性核函数得到较好效果的都会选择线性核函数.如果线性核不好,我们就需要使用RBF,在享受RBF对非线性数据的良好分类效果前,我们需要对主要的超参数进行选取.本文我们就对scikit-learn中 SVM RBF的调参做一个小结. 1. SVM RBF 主要超参数概

scikit-learn 梯度提升树(GBDT)调参小结

在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类.两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同.这些参数中,类似于Adabo

深度学习网络调参技巧

转自https://zhuanlan.zhihu.com/p/24720954?utm_source=zhihu&utm_medium=social 之前曾经写过一篇文章,讲了一些深度学习训练的技巧,其中包含了部分调参心得:深度学习训练心得.不过由于一般深度学习实验,相比普通机器学习任务,时间较长,因此调参技巧就显得尤为重要.同时个人实践中,又有一些新的调参心得,因此这里单独写一篇文章,谈一下自己对深度学习调参的理解,大家如果有其他技巧,也欢迎多多交流. 好的实验环境是成功的一半 由于深度学习实

Deep learning网络调参技巧

参数初始化 下面几种方式,随便选一个,结果基本都差不多.但是一定要做.否则可能会减慢收敛速度,影响收敛结果,甚至造成Nan等一系列问题.n_in为网络的输入大小,n_out为网络的输出大小,n为n_in或(n_in+n_out)*0.5Xavier初始法论文:http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdfHe初始化论文:https://arxiv.org/abs/1502.01852 uniform均匀分布初始化:w =

Python中Gradient Boosting Machine(GBM)调参方法详解

原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对:@酒酒Angie([email protected]) && 寒小阳([email protected]) 时间:2016年9月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52663170 1.前言 如果一直以来你只把GBM当