LC 553. Optimal Division

Given a list of positive integers, the adjacent integers will perform the float division. For example, [2,3,4] -> 2 / 3 / 4.

However, you can add any number of parenthesis at any position to change the priority of operations. You should find out how to add parenthesis to get the maximum result, and return the corresponding expression in string format. Your expression should NOT contain redundant parenthesis.

Example:

Input: [1000,100,10,2]
Output: "1000/(100/10/2)"
Explanation:
1000/(100/10/2) = 1000/((100/10)/2) = 200
However, the bold parenthesis in "1000/((100/10)/2)" are redundant, since they don‘t influence the operation priority. So you should return "1000/(100/10/2)". 

Other cases:
1000/(100/10)/2 = 50
1000/(100/(10/2)) = 50
1000/100/10/2 = 0.5
1000/100/(10/2) = 2

Note:

  1. The length of the input array is [1, 10].
  2. Elements in the given array will be in range [2, 1000].
  3. There is only one optimal division for each test case.

Runtime: 4 ms, faster than 34.01% of C++ online submissions for Optimal Division.

class Solution {
public:
    string optimalDivision(vector<int>& nums) {
      if(nums.size() == 1) return to_string(nums[0]);
      if(nums.size() == 2) return to_string(nums[0]) + "/" + to_string(nums[1]);
      string ret = "";
      ret += to_string(nums[0]) + "/(";
      for(int i=1; i<nums.size(); i++){
        ret += to_string(nums[i]) + "/";
      }
      ret = ret.substr(0,ret.size()-1);
      ret += ")";
      return ret;
    }
};

原文地址:https://www.cnblogs.com/ethanhong/p/10195683.html

时间: 2024-11-08 18:11:24

LC 553. Optimal Division的相关文章

[Math_Medium]553. Optimal Division

553. Optimal Division 题目大意:a/b/c/d...,在上面式子中加括号使得值最大 解题思路: 无论怎么加括号,a肯定是分子,b肯定是分母,要使值最大,分子a是定的,那么应该让分母最小,由于a,b...均是正整数,所以应该让b一直除,所以应当把括号加在a/(b/c/d...) 源代码: class Solution { public: string optimalDivision(vector<int>& nums) { string str="&quo

553. Optimal Division

题目: Given a list of positive integers, the adjacent integers will perform the float division. For example, [2,3,4] -> 2 / 3 / 4. However, you can add any number of parenthesis at any position to change the priority of operations. You should find out

【leetcode】553. Optimal Division

题目如下: 解题思路:这是数学上的一个定理.对于x1/x2/x3/..../xN的序列,加括号可以得到的最大值是x1/(x2/x3/..../xN). 代码如下: class Solution(object): def optimalDivision(self, nums): """ :type nums: List[int] :rtype: str """ if len(nums) == 1: return str(nums[0]) elif

Optimal Division

Given a list of positive integers, the adjacent integers will perform the float division. For example, [2,3,4] -> 2 / 3 / 4. However, you can add any number of parenthesis at any position to change the priority of operations. You should find out how

LeetCode Problems List 题目汇总

No. Title Level Rate 1 Two Sum Medium 17.70% 2 Add Two Numbers Medium 21.10% 3 Longest Substring Without Repeating Characters Medium 20.60% 4 Median of Two Sorted Arrays Hard 17.40% 5 Longest Palindromic Substring Medium 20.70% 6 ZigZag Conversion Ea

Leetcode problems classified by company 题目按公司分类(Last updated: October 2, 2017)

Sorted by frequency of problems that appear in real interviews.Last updated: October 2, 2017Google (214)534 Design TinyURL388 Longest Absolute File Path683 K Empty Slots340 Longest Substring with At Most K Distinct Characters681 Next Closest Time482

【LeetCode】数学(共106题)

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica } [2]Add Two Numbers [7]Reverse Integer [8]String to Integer (atoi) [9]Palindrome Number [12]Integer to Roman [13]Roman to Integer [29]Divide Two Integers [43]Multiply Strings [50]Pow(x,

【LeetCode】字符串 string(共112题)

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica } [3]Longest Substring Without Repeating Characters [5]Longest Palindromic Substring [6]ZigZag Conversion [8]String to Integer (atoi) [10]Regular Expression Matching [12]Integer to Roman

Codeforces Round #257 (Div. 2)C 贪心

C. Jzzhu and Chocolate time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Jzzhu has a big rectangular chocolate bar that consists of n?×?m unit squares. He wants to cut this bar exactly k time