P2153 [SDOI2009]晨跑(最小费用最大流)

题目描述

Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑、仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑。 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交。Elaxia每天从寝室出发 跑到学校,保证寝室编号为1,学校编号为N。 Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以 在一个周期内,每天的晨跑路线都不会相交(在十字路口处),寝室和学校不算十字路 口。Elaxia耐力不太好,他希望在一个周期内跑的路程尽量短,但是又希望训练周期包含的天 数尽量长。 除了练空手道,Elaxia其他时间都花在了学习和找MM上面,所有他想请你帮忙为他设计 一套满足他要求的晨跑计划。

存在1\rightarrow n1→n的边存在。这种情况下,这条边只能走一次。

输入输出格式

输入格式:

第一行:两个数N,M。表示十字路口数和街道数。 接下来M行,每行3个数a,b,c,表示路口a和路口b之间有条长度为c的街道(单向)。

输出格式:

两个数,第一个数为最长周期的天数,第二个数为满足最长天数的条件下最短的路程长 度。

输入输出样例

输入样例#1: 复制

7 10
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
2 5 5
3 6 6
5 7 1
6 7 1

输出样例#1: 复制

2 11

说明

对于30%的数据,N ≤ 20,M ≤ 120。

对于100%的数据,N ≤ 200,M ≤ 20000。

题解:

其实就只是一个建边的过程,我们需要拆点才能保证每个点都只访问一次,

#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int MAXN= 20000+10;
const int INF=0x3f3f3f3f;
struct Edge{
    int from,to,cap,flow,cost;
    Edge(int u,int v, int c,int f ,int w):from(u),to(v),cap(c),flow(f),cost(w)
    {}
};
struct MCMF
{
    int n,m;
    vector<Edge>edges;
    vector<int>G[MAXN];
    int inq[MAXN];
    int d[MAXN];
    int p[MAXN];
    int a[MAXN];
    void init(int n) {
        this->n=n;
        for (int i=0;i<=n;i++)G[i].clear();
        edges.clear();
    }
    void AddEdge(int from, int to,int cap,int cost)
    {
        edges.push_back(Edge(from,to,cap,0,cost));
        edges.push_back(Edge(to,from,0,0,-cost));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool BellmanFord(int s,int t,int &flow,long long &cost){
        for(int i=0;i<=n;i++)d[i]=INT_MAX;
        memset(inq,0, sizeof(inq));
        d[s]=0;inq[s]=1;p[s]=0;a[s]=INT_MAX;
        queue<int >Q;
        Q.push(s);
        while(!Q.empty()){
            int u=Q.front();Q.pop();
            inq[u]=0;
            int ll=G[u].size();
            for (int i = 0; i <ll ; ++i) {
                Edge& e=edges[G[u][i]];
                if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){
                    d[e.to]=d[u]+e.cost;
                    p[e.to]=G[u][i];
                    a[e.to]=min(a[u],e.cap-e.flow);
                    if(!inq[e.to]){Q.push(e.to);inq[e.to]=1;}
                }
            }
        }
        if(d[t]==INT_MAX) return false;
        flow+=a[t];
        cost+=(long long)d[t]*(long long )a[t];
        for (int u = t; u !=s ; u=edges[p[u]].from) {
            edges[p[u]].flow+=a[t];
            edges[p[u]^1].flow-=a[t];
        }
        return true;
    }
    int MincostMaxflow(int s,int t,long long &cost){
        int flow=0;cost=0;
        while(BellmanFord(s, t, flow, cost));
        return flow;
    }

};
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    int x,y,z;
    MCMF M;
    M.init(n+n);
    int s=1,t=n+n;
    M.AddEdge(1,n+1,INF,0);
    M.AddEdge(n,n+n,INF,0);
    for (int i = 2; i <n ; ++i) {
        M.AddEdge(i,i+n,1,0);
    }
    for (int i = 0; i <m ; ++i) {
        scanf("%d%d%d",&x,&y,&z);
        if(x==1&&y==n)
        {
            M.AddEdge(x+n,n,1,z);
        } else
        {
            M.AddEdge(x+n,y,1,z);
        }
    }
    LL cost=0;
    LL flow=M.MincostMaxflow(1,n+n,cost);
    printf("%lld %lld\n",flow,cost);
    return 0;
}

  

原文地址:https://www.cnblogs.com/-xiangyang/p/9749982.html

时间: 2024-10-28 09:54:24

P2153 [SDOI2009]晨跑(最小费用最大流)的相关文章

BZOJ 1877: [SDOI2009]晨跑( 最小费用最大流 )

裸的费用流...拆点, 流量限制为1, 最后的流量和费用即答案. ---------------------------------------------------------------------- #include<bits/stdc++.h> using namespace std; const int maxn = 409; const int INF = 1 << 30; struct edge { int to, cap, cost; edge *next, *r

1877. [SDOI2009]晨跑【费用流】

Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他 坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一 个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交.Elaxia每天从寝室出发 跑到学校,保证寝室 编号为1,学校编号为N. Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以 在一个周期内,每天的晨跑路线都不会相交

洛谷 P2153 [SDOI2009]晨跑

题目描述 Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交.Elaxia每天从寝室出发 跑到学校,保证寝室编号为1,学校编号为N. Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以 在一个周期内,每天的晨跑路线都不会相交(在十字路口处),寝

BZOJ 1877:[SDOI2009]晨跑(最小费用最大流)

晨跑DescriptionElaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交.Elaxia每天从寝室出发 跑到学校,保证寝室编号为1,学校编号为N. Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以 在一个周期内,每天的晨跑路线都不会相交(在

C++之路进阶——最小费用最大流(支线剧情)

F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser  hyxzc Logout 捐赠本站 Notice:由于本OJ建立在Linux平台下,而许多题的数据在Windows下制作,请注意输入.输出语句及数据类型及范围,避免无谓的RE出现. 3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 542  Solved: 332[Submit

hdu 1853 Cyclic Tour 最小费用最大流

题意:一个有向图,现在问将图中的每一个点都划分到一个环中的最少代价(边权和). 思路:拆点,建二分图,跑最小费用最大流即可.若最大流为n,则说明是最大匹配为n,所有点都参与,每个点的入度和出度又是1,所以就是环. /********************************************************* file name: hdu1853.cpp author : kereo create time: 2015年02月16日 星期一 17时38分51秒 *******

poj2135最小费用最大流经典模板题

Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13509   Accepted: 5125 Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of

CGOS461 [网络流24题] 餐巾(最小费用最大流)

题目这么说的: 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. 购买新的餐巾,每块需p分: 把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f<p).如m=l时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此. 把餐巾送到慢洗部,洗一块需n天(n>m),费用需s分(s<f). 在每天结束时,餐厅必须决定多少块用过的餐巾送到快洗部,多少块送慢洗部.在每天开始时,餐厅必须决定是否购买新餐巾及多少,使洗好的和新购的餐巾之和满足当

POJ3680 Intervals(最小费用最大流)

选择若干条线段使权值最大,并且点覆盖次数不超过k. 建图如下:vs到0建立容量为k费用为0的边:坐标终点到vt连接一条容量为k费用为0的边:对于每两个相邻坐标连接一条容量为INF费用为0的边:对于线段每两个端点连接一条容量1费用为-cost的边. 这样跑最小费用最大流.相当于找出k个线段集合,每个集合的线段都不重合.原问题就这样求解. 1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #include&